PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cultivation and Technological Value of Pseudocereals - Nutritional and Functional Aspect in the Context of a Gluten-free Diet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, consumers are more aware of what they eat and therefore start demanding from the food market. Paying attention to gluten-free products. For this reason, pseudocereals such as buckwheat, quinoa, amaranth or chia seeds have been noticed. They have good nutritional value and nutraceutical properties. Among other things, they are a good source of starch, fiber, proteins, minerals, vitamins, and phytochemicals such as saponins, polyphenols, phytosterols, phytosteroids, and betalains with potential health benefits. The plant is said to have a beneficial effect on improving health and supporting treatment in the case of disorders of the blood lipid profile, as well as hypoglycemic and anti-cancer effects. This review aims to characterize, in terms of nutritional and functional, three pseudocereals, i.e. buckwheat, quinoa and chia seeds.
Słowa kluczowe
Twórcy
autor
  • Poznan University of Life Sciences, Department of Human Nutrition and Dietetics, Poznan, Poland
  • Poznan University of Life Sciences, Department of Human Nutrition and Dietetics, Poznan, Poland
Bibliografia
  • [1] Schoenlechner R. 2016. Properties of Pseudocereals, Selected Specialty Cereals and Legumes for Food Processing with Special Attention to Gluten-Free Products. Food and Environment 10.
  • [2] Rozporządzenie Komisji (UE) nr 752/2014 z dnia 24 czerwca 2014 r. zastępujące załącznik I do rozporządzenia (WE) nr 396/2005 Parlamentu Europejskiego i Rady. Tekst mający znaczenie dla EOG [Commission Regulation (EU) No 752/2014 of 24 June 2014 replacing Annex Ito Regulation (EC) No 396/2005 of the European Parliament and of the Council Text with EEA relevance], 2014, Vol. 208.
  • [3] Rodríguez J.P., Rahman H., Thushar S., Singh R.K. 2020. Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability. Frontiers in Genetics 11.
  • [4] Szweykowska A., Szweykowski J. 2003. Slownik Botaniczny [Botanical Dictionary ]. Warszawa: Wiedza Powszechna.
  • [5] Martinez-Villaluenga C., Pefias E., Hernandez-Ledesma B. 2020. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food Chem Toxicol 137. https://doi.org/10.1016/jict.2020.111178
  • [6] Bender D., Schonlechner R. 2021. Recent Developments and Knowledge in Pseudocereals Including Technological Aspects. Acta Alimentaria 50: 583-609. https://doi.org/10.1556/066.2021.00136
  • [7] Kim D.-K., Jeong S.C., Gorinstein S., Chon, S.-U. 2012. Total Polyphenols, Antioxidant and Antiproliferative Activities of Different Extracts in Mungbean Seeds and Sprouts. Plant Foods Hum Nutr 67: 71-75. https://doi.org/10.1007/s11130-011-0273-x
  • [8] Thakur P., Kumar K., Ahmed N., Chauhan D., Eain Hyder Rizvi Q.U., Jan S., Singh T.P., Dhaliwal H.S. 2021. Effect of Soaking and Germination Treatments on Nutritional, Anti-Nutritional, and Bioactive Properties of Amaranth (Amaranthus Hypochondriacus L.), Quinoa (Chenopodium Quinoa L.), and Buckwheat (Fagopyrum Esculentum L.). Curr Res Food Sci 4: 917-925. https://doi.org/doi:10.1016/j.crfs.2021.11.019
  • [9] Alvarez-Jubete L., Arendt E.K., Gallagher E. 2009. Nutritive Value and Chemical Composition of Pseudocereals as Gluten-Free Ingredients. International Journal of Food Sciences and Nutrition 60: 240-257. https://doi.org/doi:10.1080/09637480902950597
  • [10] Janovská D., Jágr, M., Svoboda P., Dvořáček V., Meglič V., Hlásná Čepková, P. 2021. Breeding Buckwheat for Nutritional Quality in the Czech Republic. Plants (Basel) 10. https://doi.org/10.3390/plants10071262
  • [11] Zawadzka A., Kobus-Cisowska J., Stachowiak B. 2021. Bioaktywne metabolity gryki (Fagopyrum Mill.) [Buckwheat bioactive metabolites (Fagopyrum Mill.)]. Zagadnienia Doradztwa Rolniczego: 58-66.
  • [12] Zarzecka K., Gugała M., Mystkowska I.2014. Wartość odżywcza i możliwości wykorzystania gryki [NUTRITIONAL VALUE AND OPPORTUNITIES OF USING BUCKWHEAT]. Postępy Fitoterapii: 28-31.
  • [13] Mystkowska I., Zarzecka K., Gugała M., Baranowska A. Wiaściwości odżywcze i prozdrowotne komosy ryżowej [Nutritional and health-promoting properties of quinoa]. 3.
  • [14] Achremowicz B., Ceglińska A., Darmetko M., Haber T., Karpiński P., Obiedziński M., Truszkowska M. 2016. Ogólna Charakterystyka Komosy Ryżowej Oraz Możliwości Jej Wykorzystania w Przetworstwie Żywności [General Characteristics and Technological Applicability of Quinna Seeds]. Postępy Techniki Przetwórstwa Spożywczego [Advances in Food Processing Technology] 1: 68-77.
  • [15] Angeli V., Miguel Silva P., Crispim Massuela D., Khan M.W., Hamar, A., Khajehei F., Graeff-Honninger S., Piatti C. 2020. Quinoa (Chenopodium Quinoa Willd.): An Overview of the Potentials of the "Golden Grain" and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 9. https://doi.org/10.3390/foods9020216
  • [16] Kulczyński B., Kobus-Cisowska J., Taczanowski M., Kmiecik D., Gramza-Michałowska A. 2019. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge. Nutrients 11. https://doi.org/10.3390/nu11061242
  • [17] Baginsky C., Arenas J., Escobar H., Garrido M., Valero N., Tello D., Pizarro L., Valenzuela A., Morale L., Silva H. 2016. Growth and Yield of Chia (Salvia Hispanica L.) in the Mediterranean and Desert Climates of Chile. Chilean J. Agric. Res. 76: 255-264. https://doi.org/10.4067/50718-58392016000300001
  • [18] Jamboonsri W., Phillips T., Geneve R., Cahill J., Hildebrand D. 2012. Extending the Range of an Ancient Crop, Salvia Hispanica L.-a New Ω3 Source. Genetic Resources and Crop Evolution - GENET RESOUR CROP EVOLUTION 59. https://doi.org/10.1007/s10722-011-9673-x
  • [19] FAOSTAT Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 21 January 2022).
  • [20] Sinkovič L., Kokalj D., Vidrih R., Meglič V. 2020. Milling Fractions Fatty Acid Composition of Common (Fagopyrum Esculentum Moench) and Tartary (Fagopyrum Tataricum (L.) Gaertn) Buckwheat. Journal of Stored Products Research 85. https://doi.org/10.1016/j.jspr.2019.101551
  • [21] Ji X., Han L., Liu F., Yin S., Peng Q., Wang M. 2019. A Mini-Review of Isolation, Chemical Properties and Bioactivities of Polysaccharides from Buckwheat (Fagopyrum Mill). Int J Biol Macromol 127: 204-209. https://doLorg/10.1016/0Thiomac.2019.01.043
  • [22] Hara T., Shima T., Nagai H., Ohsawa R. 2020. Genetic Analysis of Photoperiod Sensitivity Associated with Differ-ence in Ecotype in Common Buckwheat. Breed Sci 70: 101-111. https://doi.org/10.1270/jsbbs.19118
  • [23] Institute of Crop Science; Xiu-shi, Y.; Pei-you, Q.; Quinoa Committee of the Crop Science Society of China; Hui-min, G.; Gui-xing, R. 2019. Quinoa Industry Development in China. Ciencia e investigacion agrarian 46: 208-219. https://doi.org/10.7764/rcia.v46i2.2157
  • [24] Vidueiros S.M., Curti R.N., Dyner L.M., Binaghi M.J., Peterson G., Bertero H.D., Pallaro A.N. 2015. Diversity and Interrelationships in Nutritional Traits in Cultivated Quinoa (Chenopodium Quinoa Willd.) from Northwest Argentina. Journal of Cereal Science 62: 87-93. https://doi.org/10.1016/j.jes.2015.01.001
  • [25] Carcea M. 2020. Nutritional Value of Grain-Based Foods. Foods 9. https://doi.org/10.3390/foods9040504
  • [26] Niro S., D'Agostino A., Fratianni A., Cinquanta L., Panfili G. 2019. Gluten-Free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods 8. https://doi.org/10.3390/foods8060208
  • [27] Martinez-Villaluenga C., Penn E., Frias J. 2017. Chapter 2 - Bioactive Peptides in Fermented Foods: Production and Evidence for Health Effects, 23-47. In: Fermented Foods in Health and Disease Prevention. Frias J., Martinez-Villaluenga C., Perias E., Eds. Boston: Academic Press.
  • [28] Rideout T.C., Marinangeli C.P.F., Harding S.V. 2015. Triglyceride-Lowering Response to Plant Sterol and Stanol Consumption. J AOAC Int 98: 707-715. https://dolorg/10.5740/jaoacint.SGERideout
  • [29] Ciftci O.N., Przybylski R., Rudzińska M. 2012. Lipid Components of Flax, Perilla, and Chia Seeds. European Journal of Lipid Science and Technology 114: 794-800. https://doi.org/10.1002/ejlt.201100207
  • [30] Rocchetti G., Lucini L., Rodriguez J.M.L., Barba F.J., Giuberti G. 2019. Gluten-Free Flours from Cereals, Pseudo-cereals and Legumes: Phenolic Fingerprints and in Vitro Antioxidant Properties. Food Chemistry 271: 157-164. https://doi.org/10.1016/j.foodehem .9018.07.176
  • [31] Zielińska D., Turemko M., Kwiatkowski J., Zieliński H. 2012. Evaluation of Flavonoid Contents and Antioxidant Capacity of the Aerial Parts of Common and Tartary Buckwheat Plants. Molecules 17: 9668-9682. https://dolorg/10.3390/molecules17089668
  • [32] Han Y., Chi, J., Zhang M., Zhang R., Fan S., Huang F., Xue K., Liu L. 2019. Characterization of Saponins and Phenolic Compounds: Antioxidant Activity and Inhibitory Effects on a-Glucosidase in Different Varieties of Colored Quinoa (Chenopodium Quinoa Willd). Bioscience, Biotechnology, and Biochemistry 83: 2128-2139. https://dolorg/10.1080/09168451.2019.1638756
  • [33] Moreno M. de L., Comino I., Sousa C. 2014. Update on Nutritional Aspects of Gluten-Free Diet in Celiac Patients. Journal of Nutrients 1: 7-18.
  • [34] Vici G., Belli L., Biondi M., Polzonetti V. 2016. Gluten Free Diet and Nutrient Deficiencies: A Review. Clin Nutr 35: 1236-1241. https://doi.org/10.1016/j.clnu.2016.05.002
  • [35] Ferste M., Obuchowicz A., Jarecka B., Pietrzak J., Karczewska K. 2015. Trudności Zwiąne z Przestrzeganiem Diety Bezglutenowej Przez Chorych Na Celiakię Mieszkających Na Górnym Śląsku [Difficulties with Adhering to a Gluten-Free Diet by Celiac Disease Patients Living in Upper Silesia]. Pediatria i Medycyna Rodzinna 11: 410-418.
  • [36] Dvořáková P., Burešová I., Kráčmar S. 2012. Buckwheat as a gluten-free cereal in combination with maize flour. 11.
  • [37] Olguín-Calderón D., González-Escobar J.L., Ríos-Villa R., Dibildox-Alvarado E., León-Rodríguez A.D., Rosa. 2018. A.P.B. de la Modulation of Caecal Microbiome in Obese Mice Associated with Administration of Amaranth or Soybean Protein Isolates. Pol. J. Food Nutr. Sci. 69: 35-44. https://doi.org/10.31883/pjfns-2019-0002
  • [38] Mithila M.V., Khanum F. 2015. Effectual Comparison of Quinoa and Amaranth Supplemented Diets in Controlling Appetite; a Biochemical Study in Rats. j Food Sci Technol 52: 6735-6741. https://doi.org/10.1007/s13197-014-1691-1
  • [39] Marineli R. da S., Moura C.S., Moraes E.A., Lenquiste S.A., Lollo P.C.B., Morato P.N., Amaya-Farfan J., Marostica M.R. 2015. Chia (Salvia Hispanica L.) Enhances HSP, PGC-1a Expressions and Improves Glucose Tolerance in Diet-Induced Obese Rats. Nutrition 31: 740-748. https://doi.org/10.1016/j.nut.2014.11.009
  • [40] Zhang Z.-L., Zhou M.-L., Tang Y., Li F.-L., Tang Y.-X., Shao J.-R., Xue W.-T., Wu Y.-M. 2012. Bioactive Compounds in Functional Buckwheat Food. Food Research International 49: 389-395. https://doi.org/10.1016/j.foodres.2012.07.035
  • [41] Yilmaz H., Nurcan Y., Meriç Ç. 2020. Buckwheat: A Useful Food and Its Effects on Human Health. Current Nutrition er Food Science 16: 29-34. https://doi.org/10.2174/1573401314666180910140021
  • [42] Zhang C., Zhang R. Li Y.M., Liang,N., Zhao Y., Zhu H., He Z., Liu J., Hao W., Jiao R., et al. 2017. Cholesterol-Lowering Activity of Tartary Buckwheat Protein. I Agric Food Chem 65: 1900-1906. https://doi.org/10.1021/acs.jafc.7b00066
  • [43] Mendonca S., Saldiva P., Cruz R., Areas J. 2009. Amaranth Protein Presents Cholesterol-Lowering Effect. Food Chemistry 116: 738-742. https://doi.org/10.1016/j.foodchem.2009.03.021
  • [44] Meisel H. 1997. Biochemical Properties of Bioactive Peptides Derived from Milk Proteins: Potential Nutraceuticals for Food and Pharmaceutical Applications. Livestock Production Science 50: 125-138. https://doi.org/10.1016/S0301-6226(97)00083- 3
  • [45] Udenigwe C.C., Aluko R.E. 2012. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Journal of Food Science 77: R11-R24.1ittps://doi.org/10.1111/j.1750-3841.2011.02455,x
  • [46] Cicero A.F.G., Fogacci F., Colletti A. 2017. Potential Role of Bioactive Peptides in Prevention and Treatment of Chronic Diseases: A Narrative Review. British Journal of Pharmacology 174: 1378-1394. https://dotorg/10.1111/hph.13608
  • [47] Grancieri M., Martino H.S.D., Gonzalez de Mejia E. 2019. Chia Seed (Salvia Hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Comprehensive Reviews in Food Science and Food Safety 18: 480-499. https://doi.org/10.1111/1541-4337.12423
  • [48] Coelho M.S., Soares-Freitas R.A.M., Arêas J.A.G.; Gandra E.A.; Salas-Mellado M. de las M. 2018. Peptides from Chia Present Antibacterial Activity and Inhibit Cholesterol Synthesis. Plant Foods Hum Nutr 73: 101-107. https://doi.org/10.1007/s11130-018-0668-z
  • [49] Kobus-Cisowska J., Szymanowska D., Maciejewska P., Kmiecik D., Gramza-Michałowska A., Kulczyński B., Cielecka-Piontek J. 2019. In Vitro Screening for Acetylcholinesterase and Butyrylcholinesterase Inhibition and Antimicrobial Activity of Chia Seeds (Salvia Hispanica). Electronic Journal of Biotechnology 37: 1-10. https://doi.org/doi:10.1016/j.ejbt.2018.10.002
  • [50] Wang J., Xiao J., Liu X., Geng F. Huang Q., Zhao J., Xiang D., Zhao G. 2019. Analysis of Tartary Buckwheat (Fagopyrum Tataricum) Seed Proteome Using Offline Two-Dimensional Liquid Chromatography and Tandem Mass Spectrometry. J Food Biochem 43. https://cioi,org/10,1111/jfbc.12863
  • [51] Zhou X.-L., Yan B.-B., Xiao Y., Zhou Y.-M., Liu T.-Y. 2018. Tartary Buckwheat Protein Prevented Dyslipidemia in High-Fat Diet-Fed Mice Associated with Gut Microbiota Changes. Food and Chemical Toxicology 119: 296-301. https://doi.org/doi:10.1016/j.fct.2018.02.052
  • [52] FoodData Central Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168874/nutrients (accessed on 22 January 2022).
  • [53] FoodData Central Available online: https://fdc.nal.usda.govHdc-app.html#/food-details/170554/nutrients (accessed on 22 January 2022).
  • [54] FoodData Central Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170687/nutrients (accessed on 22 January 2022).
  • [55] Wood S.G., Lawson L.D., Fairbanks D.J., Robison L.R., Andersen W.R. 1993. Seed Lipid Content and Fatty Acid Compo-sition of Three Quinoa Cultivars. Journal of Food Composition and Analysis 6: 41-44. https://doisorg/10.1006/jfca.1993.1005
  • [56] Molska M., Reguła J., Rudzińska M., Świeca M. 2020. Fatty Acids Profile, Atherogenic and Thrombogenic Health Lipid Indices of Lyophilized Buckwheat Sprouts Modified with the Addition of Saccharomyces Cerevisiae Var. Boulardii. Acta Scientiarum Polonorum Technologia Alimentaria 19. https://doi.org/.17306/LAFS.2020.0866
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03e1a6e8-1d92-46a1-ab8a-def695e8a650
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.