Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Metoda i narzędzie do wizualizacji wyładowań gazowych do analizy obiektów biologicznych wfazie ciekłej
Języki publikacji
Abstrakty
In the article are presented the results of researches that touch the problem of the reliability improvement of determining the impurities concentration in biological objects in liquid by using the method of gas discharge visualization. There is an improved analysis method for biological objects in liquid based on gas discharge visualization (GDV), proposed criteria approach towards the assessment of liquid bio object’s composition applying this method, presented the assessment of the nature of liquid bio objects, which use the intensity of spectral components of its radiation has gotten during GDV. There is a developed and researched math model of ignition of a crown discharge and the dependency of spectrum intensity of radiation of liquid-phase biological object on its chemical composition proposed a conversion function for the assessment of the impurities concentration, together with the informative parameters of GDV images. All the results of the experimental researches of GDV and spectral composition of liquid-phase biological objects (LPBO) are presented in the article. The proposed approach lets specify the range of Mg concentrations in an oral fluid (OF) at various thyroid disorders obtained by the trilonometric method. It was found that the concentration of Mg in oral fluid of patients without thyroid disease is 12.73 ± 2.16 mg/l, patients with risk factors for thyroid disease have a concentration of 14.98 ± 1.92 mg/l, patients with sporadic goiter have a concentration of 26.65 ± 3.73 mg/l. Such data allow providing the patients with a better diagnosis of pathological disorders in glandular thyroids that are based on the concentration of Mg in oral fluid. It is confirmed that the concentration of Mg in oral fluid greater than 15 mg/l may indicate the presence of trilonometric pathology, including the focal thyroid gland.
W artykule przedstawiono wyniki badań poruszających problem poprawy wiarygodności oznaczania stężenia zanieczyszczeń w obiektach biologicznych w cieczy metodą wizualizacji wyładowań gazowych. Opracowano ulepszoną metodę analizy obiektów biologicznych w cieczy opartą na wizualizacji wyładowań gazowych (GDV), zaproponowano podejście kryterialne do oceny składu obiektów biologicznych w cieczy z zastosowaniem tej metody, przedstawiono ocenę charakteru obiektów biologicznych w cieczy wykorzystującą intensywność składowych spektralnych jej promieniowania uzyskanego podczas GDV.Opracowano i zbadano model matematyczny zapłonu wyładowania koronowego oraz zależność intensywności widma promieniowania obiektu biologicznego w fazie ciekłej od jego składu chemicznego, zaproponowano funkcję przeliczeniową do oceny koncentracji zanieczyszczeń wraz z parametrami informacyjnymi obrazów GDV. W artykule zostały przedstawione wszystkie wyniki badań eksperymentalnych GDV i składu spektralnego obiektów biologicznych w fazie ciekłej (LPBO).Proponowane podejście pozwala określić zakres stężeń Mg w płynie z ust, przy różnych schorzeniach tarczycy uzyskanych metodą trylonometryczną.Stwierdzono, że stężenie Mg w płynie z ust pacjentów bez chorób tarczycy wynosi 12,73 ± 2,16 mg/l, u pacjentów z czynnikami ryzyka chorób tarczycy stężenie wynosi 14,98 ± 1,92 mg/l, u pacjentów z wolem stężenie wynosi 26,65 ± 3,73 mg/l.Dane te pozwalają na zapewnienie pacjentom lepszej diagnostyki zaburzeń patologicznych w tyreocytach gruczołowych, które opierają się na stężeniu Mg w płynie ustnym.Potwierdza się, że stężenie Mg w płynie ustnym większe niż 15 mg/l może wskazywać na obecność patologii trylonometrycznej, w tym ogniska w tarczycy.
Rocznik
Tom
Strony
22--29
Opis fizyczny
Bibliogr. 19 poz., fot., rys., wykr.
Twórcy
autor
- Vinnytsya National Technical University, Vinnytsya, Ukraine
autor
- Vinnytsya National Technical University, Vinnytsya, Ukraine
autor
- Vinnytsya National Technical University, Vinnytsya, Ukraine
autor
- Vinnytsya National Technical University, Vinnytsya, Ukraine
autor
- Vinnytsya National Medical University, Vinnytsya, Ukraine
autor
- Vinnytsya National Medical University, Vinnytsya, Ukraine
Bibliografia
- [1] Anton A.P. et al.: Headspace-programmed temperature vaporizer-mass spectrometry and pattern recognition techniques for the analysis of volatiles in saliva samples. Talanta 160, 2016, 21–27 [http://doi.org/10.1016/j.talanta.2016.06.061].
- [2] Bilinsky J. J., Pavlyuk O.A.: Methods and means of gas-discharge visualization for different liquid-phase bioobjects. VNTU, Vinnytsia 2016.
- [3] Bilynskyy J. J. et al.: Research performance of gas discharge visualization liquid-phase objects images. Bulletin of Vinnytsia Polytechnic Institute 5, 2011, 206–211.
- [4] Bilynskyy J. J., Pavliuk O. A.: The Research of Gas Glow Spectra of the Liquid-phase Object Discharge Visualization. Proceedings of the International Conference TCSET’2014, Lviv 2014.
- [5] Bresciani M. et al.: Monitoring water quality in two dammed reservoirs from multispectral satellite data. European Journal of Remote Sensing 2019, 113–122 [http://doi.org/10.1080/22797254.2019.1686956].
- [6] Feng J., Vince S.: Nanoscale Plasmonic Interferometers for Multispectral, High-Throughput Biochemical Sensing. Nano Lett. 2, 2012, 602–609.
- [7] Hacher G. W. et al.: Daytime-related rhythmicity of gas visualization (GDV) parameters: detection and comparison to biochemical parameters measured in saliva. Energy Fields Electrophonic Analysis In Humans And Nature 2, 2011, 214–232.
- [8] Halkias X. C.: Analysis of Kirlian images: feature extraction and segmentation. Proceedings 7th International Conference ICSP'04, 2004 [http://ru.scribd.com/doc/113932089/Halkias-Maragos-Analysis-of-Kirlian-Images].
- [9] Higashi Y., Shimada T.: Simultaneous determination of salivary testosterone and dehydroepiandrosterone using LC-MS/MS: Method development and evaluation of applicability for diagnosis and medication for late-onset hypogonadism. Chromatogr B Analyt Technol Biomed Life Sci. 2009, 2615–2623.
- [10] Jou Y. J. et al.: Proteomic identification of salivary transferrin as a biomarker for early detection of oral cancer. Chim Acta 2, 2010, 41–48.
- [11] Poznyak S. S.: On the use of the characteristics of the gas discharge induced by the electron-optical emission of the object of the environment. Economics and environmental management: an electronic scientific journal 1, 2013.
- [12] Rosa L. K. et al.: Oral health, organic and inorganic saliva composition of men with Schizophrenia: Case-control study. Journal of Trace Elements in Medicine and Biology 66, 2021, 126743 [http://doi.org/10.1016/j.jtemb.2021.126743].
- [13] Safranov T. et al.: Water resources of Ukraine: usage, qualitive and quantitative assessment. Environmental problems 1(2), 2016.
- [14] Tarabarova C. B. Quality of drinking water in Ukraine: current status, impact on health, comparative characteristics of the domestic base with international standards [http://www.health.gov.ua/].
- [15] Title XIV of The Public Health Service Act: Safety of Public Water Systems (Safe Drinking Water Act) 2020, EPA [https://www.govinfo.gov/content/pkg/COMPS-892/pdf/COMPS-892.pdf].
- [16] Voeikov V., Korotkov K.: The Emerging Science of Water. 2017.
- [17]Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics. CRC Press 2017
- [18] Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics. CRC Press 2017. [18] Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, London 2019 [http://doi.org/10.1201/9780429057618].
- [19] Wong M.: Surface-enhanced Raman spectroscopy for forensic analysis of human saliva. PhD Thesis. Boston University, 2017 [https://www.proquest.com/openview/f5b4d542ed97f157a0004216897561da/1].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03e03abf-17d6-48ce-adf2-be7278f6da42