PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ant colony optimization for data acquisition mission planning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The probabilistic Ant Colony Optimization (ACO) approach is presented to solve the problem of designing an optimal trajectory for a mobile data acquisition platform. An ACO algorithm optimizes an objective function defined in terms of the value of the acquired data samples subject to different sets of constraints depending on the current data acquisition strategy. The analysis presented in this paper focuses on an environment monitoring system, which acquires in-situ data for precise calibration of a water quality monitoring system. The value of the sample is determined based on the concentration of the water pollutant, which in turn is obtained through processing of multi-spectral satellite imagery. Since our problem is defined in a continuous space of coordinates, and in some strategies each point is able to connect to any other point in the space, we adopted a hybrid model that involves a connection graph and also a spatial grid.
Twórcy
  • Université du Québec en Outaouais, Department of Computer Science and Engineering, Canada
autor
  • Université du Québec en Outaouais, Department of Computer Science and Engineering, Canada
autor
  • Université du Québec en Outaouais, Department of Computer Science and Engineering, Canada
Bibliografia
  • [1] Smith R.N. et al. Persistent Ocean Monitoring with Underwater Gliders: Adapting Sampling Resolution, Journal of Field Robotics, 28, 5, 714-741, 2011.
  • [2] Singh A., Krause A., Guestrin C., Kaiser W., Efficient informative sensing using multiple robots, Journal of Artificial Intelligence Research, 34, 707-755, 2009.
  • [3] Taïx M., Souéres P., Frayssinet H., Cordesses L., Path planning for complete coverage with agricultural machines, Field and service robotics, vol. 24, S. Yuta, H. Asama, E. Prassler, T. Tsubouchi, and S. Thrun [Eds.], Berlin: Springer Verlag, pp. 549-558, 2006.
  • [4] Huang H., Zhu D., Yuan F., Dynamic Task Assignment and Path Planning for Multi-AUV System in 2D Variable Ocean Current Environment, 24th Chinese Control and Decision Conference (CCDC), pp. 3660-3664, 2012.
  • [5] Dorigo M., Maniezzo V., Colorni A., Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, 26, 29-41, 1996.
  • [6] Seçkiner S.U., Eroglu Y., Emrullah M., Dereli T., Ant colony optimization for continuous functions by using novel pheromone updating, Applied Mathematics and Computation, 219, 4163-4175, 2013.
  • [7] Demyen D., Buro M., Efficient Triangulation Based Pathfinding, AAAI, 6, 942-947, 2006.
  • [8] Ciornei I., Kyriakides E., Hybrid Ant Colony-Genetic Algorithm (GAAPI) for Global Continuous Optimization, IEEE Transactions on Systems, Man, and Cybernetics, 42, 234-245, 2012.
  • [9] Blum C., Sampels M., Ant colony optimization for FOP shop scheduling: a case study on different pheromone representations, in Proceedings of the 2002 congress on Evolutionary Computation, Honolulu, USA, pp. 1558-1563, 2002.
  • [10] Savelsbergh M.W.P., An efficient implementation of local search algorithms for constrained routing problems, European Journal of Operational Research, 47, 75-85, 1990.
  • [11] Bullnheimer B., Hartl R.F., Strauss C., Applying the ant system to the vehicle routing problem, in: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, S. Voss, S. Martello, I.H. Osman and C. Roucairol [Eds.], Boston: Kluwer, pp. 285-296, 1999.
  • [12] Schreyer M., Raidl G.R., Letting ants labeling point feature, Congress on Evolutionary Computation, Honolulu, USA, pp. 1564-1569, 2002.
  • [13] Gabriely Y., Rimon E., Spanning-tree based coverage of continuous areas by a mobile robot, Annals of Mathematics and Artificial Intelligence, 31, 1-4, 77-98, 2001.
  • [14] Halal F., Zaremba M.B., Deliberative control for satellite-guided water quality monitoring, IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Ottawa, Canada, May 2014.
  • [15] Dréo J., Pétrowski A., Siarry P., Taillard É., Métaheuristiques pour l’optimisation difficile, Paris: Eyrolles, 2003.
  • [16] Socha K., Dorigo M., Ant colony optimization for continuous domains, European Journal of Operational Research, 185, 1155-1173, 2008.
  • [17] Liao T., St¨utzle T., Oca M.A.M., Dorigo M., A unified ant colony optimization algorithm for continuous optimization, European Journal of Operational Research, 234, 597-609, 2014.
  • [18] Leguizamón G., Coello C.A.C., An Alternative ACOR Algorithm for Continuous Optimization Problems, The 7th International Conference in Swarm Intelligence, Brussels, Belgium, 2010.
  • [19] Tyler A.N., Svab E., Preston T., Présing M. and Kovács W.A., Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment, Int. J. Remote Sensing, 27, 8, 1521-1537, 2004.
  • [20] Gower J., King S., Borstad G., Brown L., The Importance of a Band at 709 nm for Interpreting Water-Leaving Spectral Radiance, Canadian J. Remote Sensing, 34, 3, 287–295, 2008.
  • [21] Hambrook-Berkman J.A., Canova M.G., Algal Biomass Indicators, U.S. Geological Survey, TWRI Book 9, Version 1.0, Aug. 2007.
  • [22] Long C.M., Pavelsky T.M., Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment, Remote Sensing of Environment, 129, 197-209, 2013.
  • [23] Halal F., Zaremba M., Hybrid Geno-Fuzzy Control for Deliberative-Reactive Navigation, IFAC workshop on Intelligent Control Systems, Sinaia, Romania, pp. 45-51, 2010.
  • [24] Anstee S., Fang C., Coverage path planning for harbor surveys using an AUV, in Proceedings of the IEEE Oceans Conference, Sydney, Australia, May 2010.
  • [25] Choset H., Coverage of known spaces: The boustrophedon cellular decomposition, Autonomous Robots, 9, 247-253, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03df5444-40a5-44dc-87fa-c8218739839d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.