PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of critical pressure in analyzing of rupture instability for hydromechanical deep drawing using advanced yield criterion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydromechanical deep drawing (HMDD) is a sheet hydroforming process to produce complex workpieces with high drawing ratio. Fluid pressure used during the forming process is one of the most effective parameters in this process in which increasing critical pressure causes to rupture occurrence. Since the material properties in different angles respect to the rolling direction affect the amount of critical pressure, it is important to develop an appropriate theoretical model for prediction of plastic behavior of material with high precision. In this paper, a theoretical model based on BBC2008 yield criterion including 8 and 16 parameters (8p and 16p) is developed to determine critical pressure in HMDD process. With applying uniaxial and equi-biaxial tensile tests and optimizing an error-function by using Levenberg–Marquardt method, the parameters of BBC2008 yield criterion can be determined. Low carbon St14 steel sheets are utilized for experimental samples to verify critical pressure obtained from the proposed theoretical model. BBC2008 model with 8p and 16p is compared with Barlat–Lian 1989 and experiments. The results show that BBC2008-16p yield criterion can provide a more precise model of material behavior in planar anisotropy properties, while BBC2008-8p yield criterion have a better prediction of rupture occurrence in HMDD process.
Rocznik
Strony
103--113
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran 16785-136, Iran
  • Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran 16785-136, Iran
autor
  • Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran 16785-136, Iran
  • Department of Mechanical Engineering, University of Birjand, Birjand 97175-376, Iran
Bibliografia
  • [1] A. Hashemi, M. Hoseinpour-Gollo, S.M.H. Seyedkashi, Bimetal cup hydroforming of Al/St and Cu/St composites: adaptive finite element analysis and experimental study, Journal of Mechanical Science and Technology 30 (2016) 2217–2224.
  • [2] A. Hashemi, M. Hoseinpour-Gollo, S.M.H. Seyedkashi, Study of Al/St laminated sheet and constituent layers in radial pressure assisted hydrodynamic deep drawing, Materials and Manufacturing Processes 32 (2017) 54–61.
  • [3] S. Yossifon, J. Tirosh, Rupture instability in hydroforming deep-drawing process, International Journal of Mechanical Sciences 27 (1985) 559–570.
  • [4] S. Yossifon, J. Tirosh, E. Kochavi, On suppression of plastic buckling in hydroforming processes, International Journal of Mechanical Sciences 26 (1984) 389–402.
  • [5] S.W. Lo, T.C. Hsu, W.R.D. Wilson, An analysis of the hemispherical punch hydroforming processes, Journal of Materials Processing Technology 37 (1993) 225–239.
  • [6] A. Fazli, B.M. Dariani, Theoretical and experimental analysis of the axisymmetric hydromechanical deep drawing process, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (2006) 1429–1437.
  • [7] H.D. Azodi, H. Moslemi-Naeini, M.H. Parsa, Analysis of rupture instability in the hydromechanical deep drawing of cylindrical cups, International Journal of Advanced Manufacturing Technology 39 (2008) 734–743.
  • [8] A. Gorji, H. Alavi-Hashemi, M. Bakhshi-Jooybari, S. Nourouzi, S.J. Hosseinipour, Investigation of hydrodynamic deep drawing for conical–cylindrical cups, International Journal of Advanced Manufacturing Technology 56 (2011) 915–927.
  • [9] S. Bagherzadeha, B. Mollaei-Dariani, K. Malekzadeh, Theoretical study on hydro-mechanical deep drawing process of bimetallic sheets and experimental observations, Journal of Materials Processing Technology 212 (2012) 1840–1849.
  • [10] A. Jalil, M. Hoseinpour-Gollo, S.M.H. Seyedkashi, Process analysis of hydrodynamic deep drawing of cone cups assisted by radial pressure, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2015), http://dx.doi.org/10.1177/09544054156123 25. Fig. 11 – Yield surfaces predicted by BBC2008 and Barlat– Lian models.
  • [11] A. Jalil, M. Hoseinpour-Gollo, M.M. Sheikhi, S.M.H. Seyedkashi, Hydrodynamic deep drawing of double layered conical cups, Transactions of Nonferrous Metals Society of China 26 (2016) 237–247.
  • [12] L. Lang, J. Danckert, K.B. Nielsen, Investigation into hydrodynamic deep drawing assisted by radial pressure: Part II. Numerical analysis of the drawing mechanism and the process parameters, Journal of Materials Processing Technology 166 (2005) 150–161.
  • [13] S.H. Zhang, M.R. Jensen, K.B. Nielsen, J. Danckert, L.H. Lang, D.C. Kang, Effect of anisotropy and prebulging on hydromechanical deep drawing of mild steel cups, Journal of Materials Processing Technology 142 (2003) 544–550.
  • [14] Zh. Zhang, Sh. Zhao, Y. Zhang, A novel response variable for finite element simulation of hydro-mechanical deep drawing, Journal of Materials Processing Technology 208 (2008) 85–89.
  • [15] A. Hashemi, M. Hoseinpour-Gollo, S.M.H. Seyedkashi, Process window diagram of conical cups in hydrodynamic deep drawing assisted by radial pressure, Transactions of Nonferrous Metals Society of China 25 (2015) 3064–3071.
  • [16] H. Tresca, On the yield of solids at high pressures, Comptes Rendus Academie des Sciences 59 (1864) 754.
  • [17] R. Mises, Mechanics of solids in plastic state, Göttinger Nachrichten Mathematical Physics 4 (1913) 582–592.
  • [18] D. Banabic, Sheet Metal Forming Processes Constitutive Modeling and Numerical Simulation, Springer, 2010.
  • [19] D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, International Journal of Material Forming 3 (2010) 165–189.
  • [20] D.S. Comsa, D. Banabic, Plane-stress yield criterion for highly-anisotropic sheet metals, in: Proceedings of the 7th International Conf. Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Numisheet, Interlaken, Switzerland, 2008.
  • [21] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics 2 (1944) 164–168.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03db8a9a-2178-4f98-9c61-22cbefe7abed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.