Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The publication presents an analysis of the operating conditions of the propulsion system of an ultralight autogyro during flights of various lengths and dynamics. This analysis is aimed at demonstrating the limits of variability of engine operation to determine the boundary conditions of aircraft engine operating conditions in actual operation. This parameter, in turn, will enable the effective use of the advantages of aircraft hybridization depending on the type of mission. The research data was collected from 10 different flights of the TERCEL wind turbine. MAP, RPM, flight altitude, horizontal and vertical speed, etc. were extracted from the on-board FDR (Flight Data Recorder) and then analyzed. The flights were classified as short SF (<30 min) and long LF (>30 min). The defined parameters are steady state and transient engine operation, IDLE, low load LL, high load HL and WOT as well as acceleration and deceleration. The analysis of the data shows that for the short flights, the share of steady state is about 80% and increases to more than 90% for the long flights. For the short flights, the share of acceleration accounts for about 60% of transient states and also increases to more than 65% for the long flights. For the short flights, IDLE, LL and WOT have a fairly significant share and amount to 32%, 36.1% and 7.5%, respectively, while they are increasingly marginalized by the increasing share of HL as the flight lengthens. For the long flights, HL's share was almost 70%.
Wydawca
Rocznik
Tom
Strony
223--234
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
autor
- Department of Thermodynamics, Fluid Mechanics and Aircraft Propulsion Systems, Lublin University of Technology, Poland
autor
- Department of Thermodynamics, Fluid Mechanics and Aircraft Propulsion Systems, Lublin University of Technology, Poland
Bibliografia
- 1. Geca M, Czyż Z, Sułek M. Combustion Engines, CE-2017-202 Diesel engine for aircraft propulsion system, 2017; 169(2), 7–13, doi: 10.19206/CE-2017-202.
- 2. Czarnigowski J, Jakliński P, Ścisłowski K, Rękas D, Skiba K. The use of a low frequency vibration signal in detecting the misfire of a cylinder of an aircraft piston engine, no. August 2022; 2023, doi: 10.4271/2020-01-202.
- 3. Jakliński P, Czarnigowski J, Ścisłowski K. Analysis of the operating conditions of the ASz-62IR engine during flight, Advances in Science and Technology Research Journal 2024; 18(8): 56–72. doi: 10.12913/22998624/192699.
- 4. Jakliński P. The influence of the ignition control on the performance of an aircraft radial piston engine, Combustion Engines 2019; 177(2), 60–65. doi: 10.19206/CE-2019–211.
- 5. Selvaraju N. A Low-Cost Selective Catalytic Reduction System for Diesel Engine Oxides of Nitrogen Control, Technology Innovation in Mechanical Engineering, no. June, 2022. doi: 10.1007/978-981-16-7909-4.
- 6. Czarnigowski J, Jakliński P, Zyska T, Klimkiewicz J, Wendeker M. Analiza wpływu przepisów i standardów na konstrukcję elektronicznego systemu zapłonowego lotniczego silnika tłokowego, Logistyka. 2014; 6, 2869–2876.
- 7. Czarnigowski J, Jakliński P, Karpiński P. Effect of ignition advance angle offset in a dual ignition system of a large aircraft piston engine, Int. J. Engine Res., Jun. 2022; 24(12), 4537–4552. doi: 10.1177/14680874221103711.
- 8. Czarnigowski J, Jakliński P, Zyska T. Analysis of influence of legal requirements on the design of electronic ignition system for aviation piston engine, Journal of KONES. 2017; 24(1), 91–100. doi: 10.5604/01.3001.0010.2801.
- 9. Jakliński P. Analysis of the dual control system operation during failure conditions, Eksploat. i Niezawodn., 2013; 15(3), 266–272.
- 10. Rohacs J, Kale U, Rohacs D. Radically new solutions for reducing the energy use by future aircraft and their operations, Energy, 2022; 239, 122420. doi: 10.1016/j.energy.2021.122420.
- 11. Czarnigowski J, Skiba K, Rękas D, Ścisłowski K, Jakliński P. Bench Tests for Exhaust Gas Temperature Distribution in an Aircraft Piston Engine with and without a Turbocharger, Adv. Sci. Technol. Res. J., 2021, 15(3), 155–166. doi: 10.12913/22998624/139688.
- 12. Rajashekara K. Current and future trends in electrification of road and air transportation, iEnergy, 2023, 2(3), 159–160. doi: 10.23919/IEN.2023.0027.
- 13. Delogu G, Porru M, Serpi A. A Brief Overview on Commercial Aircraft Electrification: Limits and Future Trends, in 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), 2021; 1–5. doi: 10.1109/VPPC53923.2021.9699191.
- 14. Galiński C. Wybrane Zagadnienia Projektowania Samolotów, Wydawnictwa Naukowe Instytutu Lotnictwa, Warszawa 2016; 31–32. http://ilot.edu.pl/sklep/
- 15. Kozuba J, Wojnar T, Mrozik M, Stołtny B. Use of electric motors in the context. The classification of the electric propulsion’s elements in the motor gliders, 2021; 51(2), 103–116. doi: 10.2478/jok-2021-0025.
- 16. Jakliński P, Czarnigowski J, Ścisłowski K. Analysis of the operating conditions of the ASz-62IR engine during flight, Adv. Sci. Technol. Res. J., 2024; 18(8), 56–72. doi: 10.12913/22998624/192699.
- 17. . Geiß I. Sizing of the energy storage system of hybrid-electric aircraft in general aviation, CEAS Aeronaut. J., 2017; 8(1), 53–65. doi: 10.1007/s13272-016-0220-5.
- 18. . Friedrich C, Robertson P. Design of Hybrid-Electric Propulsion Systems for Light Aircraft, AIAA Aviation 2014 -14th AIAA Aviation Technology, Integration, and Operations Conference. doi: 10.2514/6.2014-3008.
- 19. . Bravo GM, Praliyev N, Veress A. Performance Analysis of Hybrid Electric and Distributed Propulsion System Applied on a Light Aircraft, Energy, 2020; 214, October, 118823. doi: 10.1016/j.energy.2020.118823.
- 20. Pawlak M, Kuźniar M. Performance and emission of the aircraft with hybrid propulsion during take-off operation cycle, Adv. Sci. Technol. Res. J. 2024; 18(1), 155–166.
- 21. Kuźniar M, Pawlak M, Orkisz M. Comparison of Pollutants Emission for Hybrid Aircraft with Traditional and Multi-Propeller Distributed Propulsion, Sustainability, 2022; 14(22). doi: 10.3390/su142215076.
- 22. Kalwara M, Kuźniar M, Orkisz M. A rotating piston engine with electric generator in serial hybrid propulsion system for use in light aircraft, Combust. Engines, 2021; 187(4), 42–45. doi: 10.19206/CE-141353.
- 23. Nguyen DD, Kale U, Rohács D. Developing Models and Methods for Autonomous Drones in Urban Air Transport. In: Solutions for Maintenance Repair and Overhaul, T. H. Karakoc, J. Rohács, D. Rohács, S. Ekici, A. Dalkiran, and U. Kale, Eds., Cham: Springer International Publishing, 2024; 433–445.
- 24. Buican GR, Zaharia SM, Pascariu IS, Chicos LA, Lancea C, Pop MA, Stamate VM. Development and Implementation of an Automated Pilot System for a Fixed-Wing Twin-Engine Airplane UAV. In: Scientific Research and Education in the Air Force – AFASES Conference, 2022, Henri Coanda Air Force Academy. doi: 10.19062/2247-3173.2022.23.23.
- 25. Pecho P, Velky P, Kapustik S, Novak A. Use of Computer Simulation to Optimize UAV Swarm Flying. In: 2022 New Trends in Aviation Development (NTAD), 2022; 168–172. doi: 10.1109/NTAD57912.2022.10013577.
- 26. Czarnigowski J, Trendak M. Aircraft piston engine load distribution in steady state operating conditions, Combust. Engines, 2023; 193(2), 29–35. doi: 10.19206/CE-160505.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03dab7b4-158b-4f07-9b8a-a64e1157ef6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.