PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of gamma irradiation on microbiological and nutritional properties of the freeze-dried berries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Lyophilization or freeze-drying is the technique of removing ice or other frozen solvents from a material through sublimation and the removal of bound water molecules through the process of desorption. Drying occurs in an absolute vacuum at temperatures from –40°C to –50°C. This technique is often used for the conservation of fruits, especially berries. During this process, the water changes from frozen to gaseous, with no thawing. Due to low temperatures and the high vacuum, most microorganisms are rendered inactive during the lyophilization process. However, ifthere is a necessity to destroy all microorganisms from treated food, subsequent irradiation with gamma rays is an appropriate method. This paper investigated the influence of different doses of gamma radiation on lyophilized berries’ microbiological characteristics. It was shown that the radiation dose of 7 kGy is suffi cient to eliminate the total number of microorganisms (excluding molds) to the extent that the number falls below the permitted limit according t o the law on the microbiological safety of foodstuffs of the Republic of Serbia, and 5 kGy is enough for molds to be rendered inactive. It was also concluded that gamma irradiation does not affect the nutritional value of lyophilized berries.
Czasopismo
Rocznik
Strony
221--225
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Vinca Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade Department of Radiation Chemistry and Physics P. O. Box 522, 11001 Belgrade, Serbia
  • Vinca Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade Department of Radiation Chemistry and Physics P. O. Box 522, 11001 Belgrade, Serbia
Bibliografia
  • 1. Lombrana, J. I. (2008). Fundamentals and tendencies in freeze-drying of food. In C. Ratti (Ed.), Advances in food dehydration (Chapter 8, pp. 209–235). CRC Press.
  • 2. Pisano, R., Arsiccio, A., Capozzi, L. C., & Trout, B. L. (2019). Achieving continuous manufacturing in lyophilization: Technologies and approaches. Eur. J. Pharm. Biopharm., 142, 265–279. DOI: 10.1016/j.ejpb.2019.06.027.
  • 3. Aksu, M. İ., Turan, E., & Şat, İ. G. (2020). Effects of lyophilized red cabbage water extract and pH levels on the quality properties of pastırma cemen paste during chilled storage. J. Stored Prod. Res., 89, 101696. DOI: 10.1016/j.jspr.2020.101696.
  • 4. De Abreu Pinheiro, F., Ferreira Elias, L., de Jesus Filho, M., Uliana Modolo, M., de Cássia Gomes Rocha, J., Fumiere Lemos, M., & Soares Cardoso, W. (2021). Arabica and Conilon coffee fl owers: bioactive compounds and antioxidant capacity under different processes. Food Chem., 336, 127701. DOI: 10.1016/j.foodchem.2020.127701.
  • 5. Lammerskitten, A., Wiktor, A., Siemer, C., Toepfl , S., Mykhailyk, V., Gondek, E., Rybak, K., WitrowaRajchert, D., & Parniakov, O. (2019). The effects of pulsed electric fi elds on the quality parameters of freeze-dried apples. J. Food Eng., 252, 36–43. DOI: 10.1016/j.jfoodeng.2019.02.006.
  • 6. Różyło, R. (2020). Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends Food Sci. Technol., 102, 39–50. DOI: 10.1016/j.tifs.2020.06.005.
  • 7. Waghmare, R. B., Perumal, A. B., Moses, J. A., & Anandharamakrishnan, C. (2021). Recent developments in freeze drying of foods. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A comparative review (Vol. 3, pp. 82–99). Cambridge: Elsevier. DOI: 10.1016/b978-0-12-815781-7.00017-2.
  • 8. Park, J. -N., Sung, N. -Y., Byun, E. -H., Byun, E. -B., Song, B. -S., Kim, J. -H., & Lyu, E. -S. (2015). Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient’s food. Radiat.Phys. Chem., 111, 57–61. DOI: 10.1016/j.radphyschem.2015.02.011.
  • 9. International Organization for Standardization. (2009). ISO/ASTM 51538 – Practice for use of the ethanol-chlorobenzene dosimetry system.
  • 10. Kovács, A., Stenger, V., & Fóldiák, G. (1987) Evaluation methods of the ethanol – monochlorobenzene dosimeter system. In P. Hedvig, L. Nyikos & R. Schiller (Eds.), Proceedings of the 6th Tihany Symposium on Radiation Chemistry (pp. 701–709). Budapest: Akadémiai Kiadó.
  • 11. Kovács, A., Slezsák, I., McLaughlin, W., & Miller, A. (1995). Oscillometric and conductometric analysis of aqueous and organic dosimeter solutions. Radiat. Phys. Chem., 46(4/6), 1211–1215. DOI: 10.1016/0969-806x(95)00357-4.
  • 12. Vujčić, I., Mašić, S., Spasevska, H., & Dramicanin, M. (2018). Accuracy of determining absorbed irradiation dose at different temperature measurements using ethanol-chlorobenzene oscillotitrator system. Nucl. Technol. Radiat. Prot., 33(04), 363–368. DOI:10.2298/NTRP180316004V.
  • 13. European Directorate for the Quality of Medicines & HealthCare. (2011). European Pharmacopoeia 7.0.
  • 14. Büchi Labortechnik AG. (2007). Application Note. Hydrolysis Unit E-416, Extraction Unit E-816 Soxhlet. Fat determination according to WeibullStoldt – Standard application.
  • 15. International Organization for Standardization. (2009). ISO 1871:2009 Food and feed products –General guidelines for the determination of nitrogen by the Kjeldahl method.
  • 16. Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Z. Anal. Chemie, 22(1), 366–383.
  • 17. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem., 339(1), 69–72.
  • 18. Maraei, R. W., & Elsawy, K. M. (2017). Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. J. Radiat. Res. Appl. Sci., 10(1), 80–87. DOI: 10.1016/j.jrras.2016.12.004.
  • 19. Onyenekwe, P. C., Ogbadu, G. H., & Hashimoto, S. (1997). The effect of gamma radiation on the microfl ora and essential oil of Ashanti pepper (Piper guineense) berries. Postharvest Biol. Technol., 10(2),161–167. DOI: 10.1016/s0925-5214(96)01297-5.
  • 20. Jan, K., Bashir, K., & Maurya, V. K. (2021). Gamma irradiation and food properties. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A comparative review (Vol. 3, pp. 41–60). Cambridge: Elsevier. DOI: 10.1016/B978-0-08-100596-5.23052-7.
  • 21. World Health Organization. (1999). High-dose irradiation: Wholesomeness of food irradiated withdoses above 10 kGy. Report of a Joint FAO/IAEA/WHO study group. Geneva: WHO. (Technical Report Series 890).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03d9cbbe-ce33-4570-9731-86cad5aa42b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.