PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosuszenie pofermentu z biogazowni rolniczych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biodrying of the Digestate from Agricultural Biogas Plants
Języki publikacji
PL
Abstrakty
EN
Anaerobic digestion residue represents a nutrient rich resource which, if applied back on land, can reduce the use of mineral fertilizers and improve soil fertility. However, dewatering of digestate may be recommended in certain situation. Limited applicability of digestate as fertilizer may appear, especially in winter, during the vegetation period or in areas where advanced eutrophication of arable land and water bodies is developing. The use of digestate may be also governed by different laws depending on whether it is treated as fertilizer, sewage sludge or waste. The solution for thus problem may by application of biodrying process. The aim of this paper is to present the possibilities of digestate from agricultural biogas plant drying in biodrying process, and analysis of its kinetic and efficiency. Dewatered digestate from agricultural biogas plant, with initial moisture of 78%, was mixed with wood chips in proportion 45:55, respectively. The mixture was placed in container reactor, and aerated during 4 weeks. During the experiment the temperature in the reactor, weight of the digestate, and energy demand was measured. Due to biodrying process, with mean air flow rate 0.025 m3/kg.h, 502 kg mass loss was achieved, what consists 76% of the initial weight of the digestate. Mean temperature in the bioreactor during first 10 days, fluctuated between 55 to 60°C. After that, gradual decrease of the temperature to 40°C in the end of 3rd week was observed. During last week the intense cooling of the bioreactor to final temperature below 20°C was observed. It was determined, that digestate mass loss had I-order reaction character. The k constant rate value was estimated, which was on the level of 0.00068 [1/h]. Total energy demand was 14.792 kWh, what relates to 0.0295 kWh of used energy per kg of mass removed.
Słowa kluczowe
Rocznik
Strony
1554--1568
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
  • Uniwersytet Przyrodniczy, Wrocław
  • Instytut Energii Sp. z o.o., Olsztyn
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
autor
  • Uniwersytet Przyrodniczy, Wrocław
autor
  • Instytut Energii Sp. z o.o., Olsztyn
  • Instytut Energii Sp. z o.o., Olsztyn
autor
  • Instytut Energii Sp. z o.o., Olsztyn
Bibliografia
  • 1. Amon B. Kryvoruchko V. Amon T. Zechmeister-Boltenstern S.: Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture Ecosystem and Environment, 112, 153–162 (2006).
  • 2. Badran N.M.: Residual effect of nutrient-enriched organic residues on growth and nutrient utilization by corn plants grown on a sandy soil. Annals of Agricultural Sciences Moshtohor Journal, 39(1), 717–736 (2001).
  • 3. Bauer A. Mayr H. Hopfner-Sixt K. Amon T.: Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. Journal of Biotechnolpgy, 142, 56–63 (2009).
  • 4. Białowiec A. Templin M. Bernat K.: Raport z badań przemysłowych technologii biosuszenia organicznej frakcji odpadów komunalnych. na zlecenie Zakładu Usług Komunalnych „USKOM” sp. z o.o. z siedzibą w Mławie, w ramach projektu zgłoszonego w Działaniu 1.4 Wsparcie projektów celowych – Działania 4.1 Wsparcie wdrożeń wyników prac B + R. Nr wniosku (POIG.01.04.00-14-077/09). 2010.
  • 5. Börjesson P. Berglund M.: Environmental systems analysis of biogas systems—Part I: fuel-cycle emissions. Biomass and Bioenergy, 30, 469–485 (2006).
  • 6. Börjesson P. Berglund M.: Environmental systems analysis of biogas systems—Part II: the environmental impact of replacing various reference systems. Biomass and Bioenergy, 31, 326–344 (2007).
  • 7. Bernat K. Wojnowska-Baryła I. Kasiński S. Agopsowicz M.: Technologie i biotechnologie stosowane w mechaniczno-biologicznym przetwarzaniu odpadów komunalnych. Trendy w Biotechnologii Środowiska. Cz. II. Wydawnictwo UWM. Olsztyn 2011.
  • 8. Chen S.Q. Chen B.: Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: an energy-based analysis. Renewable and Sustainable Energy Reviews, 16(6), 3948–3959 (2012).
  • 9. Garg R.N. Pathak H. Das D.K. Tomar R.K.: Use of fly ash and biogas slurry for improving wheat yield and physical properties of soil. Environmental Monitoring and Assesessment, 107(1/3), 1–9 (2005).
  • 10. Kogut P., Piekarski J., Ignatowicz K.: Rozruch instalacji biogazowej z wykorzystaniem osadu zaszczepowego. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 16, 534–545 (2014).
  • 11. Mason I.G.: Mathematical modeling of the composting process: A review. Waste Management, 26. 3–21 (2006).
  • 12. Pötsch E.M. Pfundtner E. Much P.: Nutrient Content and hygienic properties of fermentation residues from agricultural biogas plants. Land use systems in grassland dominated regions. Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004, 1055–1057.
  • 13. Prochnow A. Heiermann M. Plöchl M. Linke B. Idler C. Amon T. Hobbs P.J.: Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology, 100, 4931–4944 (2009).
  • 14. Rehl T. Müller J.: Life cycle assessment of biogas digestate processing technologies. Resources Conservation and Recycling, 56, 92–104 (2011).
  • 15. Ritzkowski M. Heerenklage J. Stegmann R.: An overview on techniques and regulations of mechanical-biological pretreatment of municipal solid waste. Environmental Biotechnology, 2(2), 57–68 (2006).
  • 16. Sandars D.L. Audsley E. Canete C. Cumby T.R. Scotford I.M. Williams A.G.: Environmental benefits of livestock manure management practices and technology by Life Cycle Assessment. Biosystems Engineering, 84, 267–81 (2003).
  • 17. Velis C.A. Longhurst P.J. Drew G.H. Smith R. Pollard S.J.T.: Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresource Technology, 100, 2747–2761 (2009).
  • 18. Voca N. Kricka T. Cosic T. Rupic V. Jukic Z. Kalambura S.: Digested residue as a fertilizer after the mesophilic process of anaerobic digestion. Plant Soil Environment, 51, 262–6 (2005).
  • 19. Zaid M.S. Ghozoli M.A. Lamhy M.A.: Residual effect of some organic residues produced from biogas on growth and nutrients utilization by wheat plants. Annals of Agricultural Sciences Moshtohor Journal, 43(2), 955–972 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03d610a3-036c-40e1-a33e-d6140b465eda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.