PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparisons of envelope morphological filtering methods and various regular algorithms for surface texture analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper both envelope approach and morphological filters for characterisation of surface textures were proposed, applied and thoroughly examined. Obtained results were compared with those received after appliance of commonly-used algorithms. The effect of appliance of proposed procedures on surface topography parameters (from ISO 25178 standard) was taken into consideration. The following types of surface textures were assessed: two-process plateau-honed cylinder liners, plateau-honed cylinder liners with additionally burnished dimples, turned piston skirts, grinded and/or isotropic topographies. It was assumed that envelope characteristics (envelope filtration) can provide results useful for assessments of deep and/or wide oil-reservoirs especially when they are edge located. Moreover, some near-valley areas of surface texture details can be less distorted when envelope filtering is accomplished. It was also found that closing and/or opening envelope filtration can be valuable for reduction of some surface topography measurement errors.
Rocznik
Strony
243--263
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Hao, Q., Bianchi, D., Kaestner, M., Reithmeier, E. (2010). Feature based characterization of worn surfaces for a sliding test. Tribology International, 43(5-6), 1186-1192.
  • [2] Li, L., Zhang, X., Zhang, H., He, X., Xu, M. (2010). Feature extraction of non-stochastic surfaces using curvelets. Precision Engineering, 39, 212-219.
  • [3] Vorburger, T.V., Rhee, H.-G., Renegar, T.B., Song, J.-F., Zheng, A. (2007). Comparison of optical and stylus methods for measurement of surface texture. The International Journal of Advanced Manufacturing Technology, 33(1-2), 110-118.
  • [4] Pawlus, P., Reizer, R., Wieczorowski, M. (2018). Comparison of results of surface texture measurement obtained with stylus methods and optical methods. Metrology and Measurement Systems, 25(3), 589-602.
  • [5] Srivastava, D., Agarwal, A. (2004). Experimental investigations on the effect of liner surface properties on wear in non-firing engine simulator. SAE Technical Paper, 1, 0605.
  • [6] Podulka, P, Dobrzański, P, Pawlus, P, Lenart, A. (2014). The effect of reference plane on values of a real surface topography parameters from cylindrical elements. Metrology and Measurement Systems, 21(2), 247-256.
  • [7] De Groot, P.J. (2019). A review of selected topics in interferometric optical metrology. Reports on Progress in Physics, 82(5), 056101.
  • [8] De Groot, P.J. (2015). Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics, 7(1), 1-65.
  • [9] Poon, C.Y., Bhushan, B. (1995). Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear, 190(1), 76-88.
  • [10] Podulka, P., Pawlus, P., Dobrzański, P., Lenart, A. (2014). Spikes removal in Surface measurement. Journal of Physics: Conference Series, 483, 012025.
  • [11] Jiang, X., Lou, S., Scott, P.J. (2012). Morphological method for surface metrology and dimensional metrology based on the alpha shape. Measurement Science and Technology, 23(1), 015003.
  • [12] Pawlus, P., Reizer, R., Wieczorowski, M. (2017). Problem of non-measured points in surface texture measurements. Metrology and Measurement Systems, 24(3), 525-536.
  • [13] Whitehouse, D. (2011). Surface metrology today: complicated, confusing, effective. Proc. of the 13th International Conference on Metrology and Properties of Engineering Surfaces, Twickenham Stadium, United Kingdom, 1-10.
  • [14] De Groot, P.J. (2017). The meaning and measure of vertical resolution in optical surface topography measurement. Applied Sciences, 7(1), 54.
  • [15] Abdelsalam, D.G., Kim, D. (2011). Coherent noise suppression in digital holography based on flat fielding with apodized apertures. Optics Express, 19(19), 17951.
  • [16] Xu, X., Huang, Q., Shen, Z., Wang, Z. (2016). Improving the surface metrology accuracy of optical profilers by using multiple measurements. Optical Engineering, 55(10), 104105.
  • [17] Giusca, C.L., Leach, R.K., Helary, F., Gutauskas, T., Nimishakavi, L. (2012). Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness. Measurement Science and Technology, 23(3), 035008.
  • [18] Jiang, X., Scott, P.J., Whitehouse, D.J., Blunt, L. (2007). Paradigm shifts in surface metrology. Part II. The current shift. Proceedings of The Royal Society A, 463(2085), 2071-2099.
  • [19] Rahlves, M., Roth, B., Reithmeier, E. (2017). Confocal signal evaluation algorithms for surface metrology: uncertainty and numerical efficiency. Applied Optics, 56(21), 5920-5926.
  • [20] Lou, S., Jiang, X., Scott, P.J. (2013). Application of the morphological alpha shape method to the extraction of topographical features from engineering surfaces. Measurement, 46(2), 1002-1008.
  • [21] Lou, S., Jiang, X., Scott, P.J. (2014). Fast algorithm for Morphological Filters. Journal of Physics: Conference Series, 311, 012001.
  • [22] Lou, S., Jiang, X., Scott, P.J. (2013). Correlating motif analysis and morphological filters for surface texture analysis. Measurement, 46(2), 993-1001.
  • [23] Kumar, J., Shunmugam, M.S. (2006). Morphological operations on engineering surfaces using a 3D-structuring element of an appropriate size. Measurement Science and Technology, 17(10), 2655.
  • [24] Pawlus, P., Reizer, R., Łętocha, A., Wieczorowski, M. (2019). Morphological filtration of two-process profiles. Bulletin of the Polish Academy of Science Technical Science, 67(1), 107-113.
  • [25] Kumar, J., Shunmugam, M.S. (2006). A new approach for filtering of surface profiles using morphological operations. International Journal of Machine Tools and Manufacture, 46(3-4), 260-270.
  • [26] Lou, S., Jiang, X., Scott, P.J. (2012). Algorithms for morphological profile filters and their comparison. Precision Engineering, 36(3), 414-423.
  • [27] Tholath, J., Radhakrishnan, V. (1999). Three-dimensional filtering of engineering surfaces using envelope system. Precision Engineering, 23(4), 221-228.
  • [28] Dietzsch, M., Gerlach, M., Groeger, S. (2008). Back to the envelope system with morphological operations for the evaluation of surfaces. Wear, 264(5-6), 411-415.
  • [29] Lingadurai, K., Shunmugam, M.S. (2005). Use of morphological closing filters for three-dimensional filtering of engineering surfaces. Journal of Manufacturing Systems, 24(4), 366-376.
  • [30] Janecki, D. (2011). Gaussian filters with profile extrapolation. Precision Engineering, 35(4), 602-606.
  • [31] Kumar, J., Shunmugam, M.S. (2007). Fitting of robust reference surface based on least absolute deviations. Precision Engineering, 31(2), 102-113.
  • [32] Jiang, X. (2010). Robust solution for the evaluation of stratified functional surfaces. CIRP Annals – Manufacturing Technology, 59(1), 573-576.
  • [33] Zhang, H., Yuan, Y., Piao, W. (2010). A universal spline filter for surface metrology. Measurement, 43(10), 1575-1582.
  • [34] ISO 25178-3:2012 Geometrical product specifications (GPS) - Surface texture: A real - Part 3: Specification operators.
  • [35] Brinkmann, S., Bodschwinna, H. (2003). Advanced Gaussian filters. Blunt L., Jiang X. (eds.). Advanced Techniques for Assessment Surface Topography. London and Sterling: Kogan Page Science, 62-89.
Uwagi
EN
1. This research was prepared with financial support from the National Science Centre, project No. 2013/09/N/ST8/04333.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03d41710-2307-4982-ab14-7d44dc15456d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.