Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes a procedure for the conceptual design of reinforced concrete (RC) structures under a multiple load case (MLC), based on the truss-like topology optimization method. It is assumed that planar truss-like members are densely embedded in concrete to simulate RC structures. The densities and orientations of the reinforcing bars at nodes are regarded as optimization variables. The optimal reinforcement layout is obtained by solving the problem of minimizing the total volume of reinforcing bars with stress constraints. By solving a least squares problem, the optimized reinforcement layout under the MLC is obtained. According to the actual needs of the project, the zones to be reinforced are determined by reserving a certain percentage of elements. Lastly, a recommended reinforcement design is determined based on the densities and orientations of truss-like members. The reinforcement design tends to be more perfect by adding necessary structural reinforcements that meet specification requirements. No concrete cover is considered. Several examples are used to demonstrate the capability of the proposed method in finding the best reinforcement layout design.
Czasopismo
Rocznik
Tom
Strony
523--537
Opis fizyczny
Bibliogr. 28 poz., il., tab.
Twórcy
autor
- College of Civil Engineering and Architecture, Jiangxi Science and Technology Normal University, Nanchang, China
autor
autor
- College of Civil Engineering and Architecture, Jiangxi Science and Technology Normal University, Nanchang, China
autor
Bibliografia
- [1] M.P. Bendsøe, N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method”, Computer Methods in Applied Mechanics and Engineering, 1988, vol. 71, no. 12, pp. 197-224, DOI: 10.1016/0045-7825(88)90086-2.
- [2] M.P. Bendsøe, “Optimal shape design as a material distribution problem”, Structural and Multidisciplinary Optimization, 1989, vol. 1, no. 4, pp. 193-202, DOI: 10.1007/BF01650949.
- [3] G.I.N. Rozvany, M. Zhou, T. Birker, “Generalized shape optimization without homogenization”, Structural and Multidisciplinary Optimization, 1992, vol. 4, no. 3-4, pp. 250-252, DOI: 10.1007/BF01742754.
- [4] H.P. Mlejnek, “Some aspects of the genesis of structures”, Structural and Multidisciplinary Optimization, 1992, vol. 5, no. 1-2, pp. 64-69, DOI: 10.1007/BF01744697.
- [5] Y.M. Xie, G.P. Steven, “A simple evolutionary procedure for structural optimization”, Computers & Structures, 1993, vol. 49, no. 5, pp. 885-896, DOI: 10.1016/0045-7949(93)90035-C.
- [6] M.Y. Wang, X. Wang, D. Guo, “A level set method for structural topology optimization”, Computer Methods in Applied Mechanics and Engineering, 2003, vol. 192, no. 1-2, pp. 227-246, DOI: 10.1016/S0045-7825(02)00559-5.
- [7] X. Guo, W. Zhang, W. Zhong, “Doing topology optimization explicitly and geometrically - a new moving morphable components based framework”, Journal of Applied Mechanics, 2014, vol. 81, no. 8, art. ID 081009, DOI: 10.1115/1.4027609.
- [8] V.N. Hoang, G.W. Jang, “Topology optimization using moving morphable bars for versatile thickness control”, Computer Methods in Applied Mechanics and Engineering, 2017, vol. 317, pp. 153-173, DOI: 10.1016/j.cma.2016.12.004.
- [9] G. Dzierżanowski, K. Hetmański, “Optimal design of archgrids: the second-order cone programming perspective”, Archives of Civil Engineering, 2021, vol. 67, no. 4, pp. 469-486, DOI: 10.24425/ace.2021.138512.
- [10] K. Zhou, “Topology optimization of Prager structures based on truss-like material model”, Structural and Multidisciplinary Optimization, 2015, vol. 51, no. 5, pp. 1077-1081, DOI: 10.1007/s00158-014-1197-5.
- [11] K. Bołbotowski, T. Sokół, “New method of generating Strut and Tie models using truss topology optimization”, in 3rd Polish Congress of Mechanics and 21st International Conference on Computer Methods in Mechanics. Gdansk, 2015, DOI: 10.1201/b20057-21.
- [12] Q.Q. Liang, Y.M. Xie, G.P. Steven, “Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure”, ACI Structural Journal, 2000, vol. 97, no. 2, pp. 322-331.
- [13] Q.Q. Liang, Y.M. Xie, G.P. Steven, “Generating optimal strut-and-tie models in prestressed concrete beams by performance-based optimization”, ACI Structural Journal, 2001, vol. 98, no. 2, pp. 226-232.
- [14] H.G. Kwak, S.H. Noh, “Determination of strut-and-tie models using evolutionary structural optimization”, Engineering Structures, 2006, vol. 28, no. 10, pp. 1440-1449, DOI: 10.1016/j.engstruct.2006.01.013.
- [15] R.M. Lanes, M. Greco, M.B.B.F. Guerra, “Strut-and-tie models for linear and nonlinear behavior of concrete based on topological evolutionary structure optimization (ESO)”, Revista IBRACON de Estruturas e Materiais, 2019, vol. 12, no. 1, pp. 87-100, DOI: 10.1590/S1983-41952019000100008.
- [16] L.J. Leu, C.W. Huang, C.S. Chen, et al., “Strut-and-tie design methodology for three-dimensional reinforced concrete structures”, Journal of Structural Engineering, 2006, vol. 132, no. 6, pp. 929-938, DOI: 10.1061/(ASCE)0733-9445(2006)132:6(929).
- [17] V. Shobeiri, B. Ahmadi-Nedushan, “Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete”, Engineering Optimization, 2017, vol. 49, no. 12, pp. 2055-2078, DOI: 10.1080/0305215X.2017.1292382.
- [18] V. Shobeiri, “Determination of strut-and-tie models for structural concrete under dynamic loads”, Canadian Journal of Civil Engineering, 2019, vol. 46, no. 12, pp. 1090-1102, DOI: 10.1139/cjce-2018-0780.
- [19] M. Bruggi, “Generating strut-and-tie patterns for reinforced concrete structures using topology optimization”, Computers & Structures, 2009, vol. 87, no. 23-24, pp. 1483-1495, DOI: 10.1016/j.compstruc.2009.06.003.
- [20] Y. Xia, M. Langelaar, M.A.N. Hendriks, “A critical evaluation of topology optimization results for strut-and-tie modeling of reinforced concrete”, Computer-Aided Civil and Infrastructure Engineering, 2020, vol. 35, no. 8, pp. 850-869, DOI: 10.1111/mice.12537.
- [21] W. Qiao, G. Chen, “Generation of strut-and-tie models in concrete structures by topology optimization based on moving morphable components”, Engineering Optimization, 2021, vol. 53, no. 7, pp. 1251-1272, DOI: 10.1080/0305215X.2020.1781843.
- [22] M. Victoria, O.M. Querin, P. Martí, “Generation of strut-and-tie models by topology design using different material properties in tension and compression”, Structural and Multidisciplinary Optimization, 2011, vol. 44, no. 2, pp. 247-258, DOI: 10.1007/s00158-011-0633-z.
- [23] Z. Du, W. Zhang, Y. Zhang, et al., “Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression”, Computational Mechanics, 2019, vol. 63, no. 2, pp. 335-363, DOI: 10.1007/s00466-018-1597-2.
- [24] O. Amir, O. Sigmund, “Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization”, Structural and Multidisciplinary Optimization, 2013, vol. 47, no. 2, pp. 157-174, DOI: 10.1007/s00158-012-0817-1.
- [25] Y. Luo, Z. Kang, “Layout design of reinforced concrete structures using two-material topology optimization with Drucker-Prager yield constraints”, Structural and Multidisciplinary Optimization, 2013, vol. 47, no. 1, pp. 95-110, DOI: 10.1007/s00158-012-0809-1.
- [26] A. Marco, “Application of Evolutionary Structural Optimization to Reinforced Concrete Structures”, M.A. thesis, Delft University of Technology, Netherland, 2018.
- [27] Z. Yang, K. Zhou, S. Qiao, “Topology optimization of reinforced concrete structure using composite truss-like model”, Structural Engineering and Mechanics, 2018, vol. 67, no. 1, pp. 79-85, DOI: 10.12989/sem.2018.67.1.079.
- [28] K. Zhou, X. Li, “Topology optimization of structures under multiple load cases using a fiber-reinforced composite material model”, Computational Mechanics, 2006, vol. 38, no. 2, pp. 163-170, DOI: 10.1007/s00466-005-0735-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03d2f174-0fc1-4e89-b060-5cd0ed0560a2