
GEOMATICS AND ENVIRONMENTAL ENGINEERING • Volume 9 • Number 3 • 2015

http://dx.doi.org/10.7494/geom.2015.9.3.35

35

Mateusz Ilba*

An Analysis and 3D Visualization
of Shading of Urban Spatial Objects

with the Use of the Phython Programming Language
in the Blender Application**

1. Introduction to the Ray Tracing Algorithm

This algorithm is one of the fi rst methods for the creation of photo-realistic 3D
visualizations. It is based on specifying the color and brightness of a pixel seen by an
observer / a camera on the screen. In order to achieve it, light vectors are used, which
collect information on color and light output. The most computing power is used by
the algorithm for calculating intersections of elements of 3D solids with light (vec-
tors) [5]. It is for optimization that an initial location of the intersection is determined
fi rst and then its exact position. In Figure 1, the formation process of shadows and
their presentation can be seen. It can be noticed that the visible pixels of the observ-
er’s image are subjected to the test of the light source visibility. The intersection of
the plains of the 3D object with the vector, which is defi ned by the point of the light
source and the visible point, which is tested for shading, is searched [3].

 * AGH University of Science and Technology, Faculty of Minining Surveying and Enviromental En-
gineering, Krakow, Poland

 ** The study was the carried out with the fi nancial support from grant no. 15.11.150.324, AGH University
of Science and Technology. Author is a benefi ciary of Anna Pasek Foundation Scholarship VII edition

Fig. 1. Generating shadows in the ray tracing algorithm

36 M. Ilba

2. Saving Data on Lighting for Textures

The ray tracing algorithm is used to determine the shadows of the currently
visible areas of the 3D image. In order to perform the shading analysis, it is not only
the knowledge of the shading of the visible scene at the given time that is needed
since we will not get information for all 3D elements in this way. We have to obtain
data that show shading for all planes in the given scene.

It is in this case that the function of the shadow location recording for textures,
which is put on the object using specifi c rules, is extremely important. The Blender
software has such a possibility and the function responsible for this process is called
“baking textures”. Textures are bitmap images, which simulate details of surfaces of
the 3D objects; among others their colors and texture. The rules determining putt ing
the two-dimensional texture on a 3D object are called texture mapping and defi ne
how the image will be put on the object.

The UV mapping creates a link between the texture and the object on the basis
of the distribution of all planes in the image. Specifi ed planes may have a connec-
tion with the same pixels. While saving the shading, it is very practical to put each
plane of the 3D model on a clean fragment of the image without overlapping them.
It will provide uniqueness of the stored information on the shading of the object [12].
In Figure 2, we can see an example of the UV texture mapping.

Fig. 2. Texture mapping diagram. An example based on generating shadows using
the “bake” function in the Blender software

We can see that the areas are marked on the left side, in which the texture will
be put on individual planes of the object. Additionally, there are small gaps among
overlapping planes in the image. While combining the 2D image with the 3D object,
the software transforms texture pixels and puts them in appropriate positions on
the 3D model according to the mapping. Since we work with a cube, the image has
6 parts, which are put on the cube at appropriate places. It is in the fi gure that the
walls 3 and 2 from the rear part of the object as well as wall 6 from the bott om are
invisible.

An Analysis and 3D Visualization of Shading of Urban Spatial Objects... 37

If there is at least one source of light in a scene, which generates shadows, we
have the possibility to generate shadow maps for 3D objects. In the Blender soft-
ware, shading is saved in the form of an image with two values for the pixels: if there
is no shadow, it will be white and if there is shadow, it will be black. In Figure 2
on the left, we can see an example of an image with information on the shading
generated for the whole 3D object. A big advantage of the algorithm is taking into
account all spatial elements in the 3D scene while generating shadows. It is in the
example that there is a second object, which causes the appearance of shadows on
the analyzed object.

Before starting “baking texture”, an image has to be created, on which the 3D
object will be mapped. The resolution of an image can be selected freely but it should
be taken into account that the too high resolution will cause a substantial increase
in the time of the algorithm’s work and will increase the use of the computer mem-
ory. Additionally, an automatic distribution of the 3D object’s planes on the texture
through UV mapping has to be carried out [1]. The software analyzes the scene itself
and we obtain a texture for the specifi ed object as a result.

3. Application Scheme

It is not a problem to perform the operation of determining shading for a single
object at one moment of time, so it can be done manually [2]. If there are more ob-
jects then the manual generation of shadows will be ineffi cient. Additionally, if we
want to make classifi cation for a whole day, we have to change the position of the
sun from time to time and carry out the analysis all over again saving the previous
results in a certain way. Therefore, there has to be writt en a script for the automation
of the analysis, an application coordinating actions carried out by hand along with
the performance classifi cation.

The fi rst step, while carrying out the analysis, is to load 3D objects. The Blender
software environment supports a wide range of popular formats, in which three-di-
mensional objects are saved. Among them there are fi les: *.obj, *.dae, *.svg, *.vrl,
*.3ds, which set the standard for 3D data exchange. Each program supporting
three-dimensional data is able to save them at least one in the above-mentioned
formats. While creating the algorithm, the author used objects saved in the format
*.obj imported from the AutoCAD software and from the format *.vrl originating
from the export of objects from the ArcScene software. When importing 3D data,
the att ention should be paid to the coordinate system. The Y-axis in the Blender
software sets the north direction, the X-axis the east direction and the Z-axis shows
the height. A change of any coordinate, while 3D objects are imported, will cause
incorrect generation of shadows [9].

A fl owchart for the work of the script is shown in Figure 3. It can be noticed that
there are two main loops in the program: the loop of the object selection for analysis
and the loop of the time selection.

38 M. Ilba

Each separate spatial object is analyzed in the order that has been loaded in
the list of items. The division of the analysis into single elements is needed due to
the use of the “baking textures” function for one object. Each “baking” has to be
performed on a new texture, which is put on the spatial object. After “baking” the
image is converted into a variable in the form of a list of image pixel values. This
operation allows for carrying out any classifi cation, among others of the time length

Fig. 3. Scheme of the algorithm shading daily

An Analysis and 3D Visualization of Shading of Urban Spatial Objects... 39

of falling sunlight on the given item. The second loop causes generating shadows
for every moment, in which the sun is above the horizon. These moments are saved
in the form of a list and show following minutes from sunrise to sunset. Since they
are given in minutes, our time list can be freely fi ltered; for example, we can select
a point in time every 15 minutes in order to speed the work of the algorithm up.

Apart from the main algorithm, a model for determining the position of the sun
for a certain time and certain geographic coordinates was developed. It is based on
the operations contained in the NOAA ESRL formula presented in the Python lan-
guage [4]. It is an exact, which takes into account among others refraction of sunlight
passing through the atmosphere. The program also includes smaller algorithms that
improve the performance of the entire application: among others the method for
fi ltering the list, for conversion of a list into an image and vice versa, for prepara-
tion for “baking” shadows in the texture [2]. Additionally, the author has developed
a formula for the transition from a numerical aggregate data of shading into the
outcome texture presenting the shading time using any number of time intervals
and colors.

4. Summary

In the era of the information society the demand for each type of information is
huge, especially, when it is applied to us. Without any doubt information on shad-
ing is required by planners and architects but also by ordinary people, who are in-
terested in sunlight falling onto particular buildings. The knowledge, if the sunlight
will not be blocked by surrounding buildings or urban infrastructure is valuable and
provides us with answers to many questions.

Without any doubt the presented way of carrying out an analysis of shading
based on the use of the Blender 2.69 program, will allow for obtaining informa-
tion on shading time. An absolute advantage of the application is its gratuitousness;
blender is available under the GPL license so all scripts, including the ones writt en
by the author, are distributed free of charge. It causes that the access to this applica-
tion is extremely wide.

The author has tested the work of the script for six output resolutions of the
texture: 10 × 10 pixels, 100 × 100 pixels, 200 × 200 pixels, 300 × 300 pixels, 400 × 400
pixels and 500 × 500 pixels. While executing the script, the generation of shadows
was set with an interval of 15 minutes that means that the sun changed its posi-
tion with a specifi ed interval during the day. Additionally, the author examined,
how the script behaved at diff erent intervals between generated shadows. 1-minute,
5-minutes, 10-minutes, 15-minutes intervals were taken into account. In Figure 4 we
can see a diff erence in the appearance of the scene after classifi cation of the result,
whereas Table 1 shows, how the time needed to generate shadows varies depending
on the resolution of the resulting texture, Table 2 shows how the time needed to gen-
erate shadows varies depending on the time interval. We can notice that although

40 M. Ilba

the interval of the analysis does not signifi cantly aff ect the generated results, but if
the time interval is too big, and the sett ing of too small size of the texture will cause
blurring of details.

Table 1. Analysis time, generate shadows varies
depending on the resolution of the resulting texture

No. The number of texture
pixels

Analysis time
[s]

1 100 16
2 10,000 18
3 40,000 23
4 90,000 29
5 160,000 37
6 250,000 56

Fig. 4. Diff erent sett ings generate shading: a) no shading analyses; b) resolution of the texture
was set to 500 × 500 pixels, time interval 15 minutes; c) resolution of the texture was set to
500 × 500 pixels, time interval 1 minutes; d) resolution of the texture was set to 10 × 10 pixels,

time interval 15 minutes

a) b)

c) d)

An Analysis and 3D Visualization of Shading of Urban Spatial Objects... 41

The longest work time of the script falls on the analysis of the pixel list, there-
fore by increasing the resolution, we increase the length of the list signifi cantly. For
the texture size of 10 × 10, the list has only 100 elements; when we increase the size
to 50 × 50 pixels the list is increased to 2,500 elements; after increasing the size to
100 × 100 pixels the list grows to 10,000 elements. Probably, the speed of shading
generation could be increased signifi cantly by introducing operations on matrices.
The author did not fi nd a solution to operate on matrices in the environment of the
blender software [8]. The latest version of Python 3.3.0 does not allow for proper use
of the available Python libraries writt en for older versions [7].

Table 2. Analysis time, generate shadows varies depending on the time interval

Time interval
[minutes]

Number of time moments during
the analyzed day

(e.g. December 21st)

Analysis time
[s]

1 551 833

5 110 170

10 55 85

15 37 56

As a result of the shading analysis, we obtain visualization, with which we can
easily distinguish areas on the objects that are shaded for a certain time. We can
infl uence the pallet of colors and a specifi ed number of intervals. We can mark any
time interval that we are interested in, in which shadows appear, with any color.
We have a possibility to save a 3D scene, which presents the results of the analysis,
in any format and display it on any computer, even without the Blender software.

Besides normal tests for generating shading, the author tested the work of the
script on real data, which were taken from a part of Manhatt an, a district of New
York. The data were imported as a *.shp fi le with the data on height of the build-
ings [10]. Moreover, the author compared the results with the commercial solutions
of the Bentley Company in the form of the Microstation V8i application and the
application Shadow Analysis for Google SketchUp. The results of this comparison
can be seen in Figures 5–7.

Summing up, by combining the Python language with the Blender application,
it is possible to carry out day- analysis for shading of a 3D city. It has advantages
because there are no purchase costs for the person performing the analysis; there is
a wide range of formats of input spatial data; the presentation of the analysis can be
modifi ed fl exibly, the number of ranges and their colors can be set; the visualized
scene can be exported to many formats. The disadvantage is the time of the analysis.
The script is an eff ective method for automating shading analysis and for the evalu-
ation of diff erent options for shaping development in urban areas. The author wants
to develop the application in order to improve the quality of the generated spatial
analysis as well as to increase the effi ciency of the algorithm.

42 M. Ilba

Fig. 5. Daily shading analysis.
Analysis was performed with the Shadow Analysis TM for Google SketchUp program

Source: [6]

Fig. 6. Daily shading analysis.
Analysis was performed with the Bentley Microstation V8i TM application

An Analysis and 3D Visualization of Shading of Urban Spatial Objects... 43

References

[1] Arłukowicz P.: Polski kurs Blendera. Funkcja Bake. [on-line:] htt p://polskikurs-
blendera.pl/ [access: 15.12.2014].

[2] Blender: Blender manual. [on-line:] htt p://wiki.blender.org/index.php/
Doc:2.6/Manual [access: 18.01.2015].

[3] Cook R., Porter T., Carpenter L.: Distributed Ray Tracing. Computer Graphics,
vol. 18, no. 3, 1984, pp. 137–145.

[4] Earth System Research Laboratory: Solar Calculation Details. [on-line:] htt p://
www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html [access: 10.01.2015].

[5] Institute for Communication Technologies and Embedded Systems (ICE):
Ray-Tracing. [on-line:] htt p://www.ice.rwth-aachen.de/research/tools-proj-
ects/grace/ray-traycing/ [access: 20.12.2014].

[6] Janik T.: Architecture Design and Computation. Shadow Analysis. [on-line:]
htt ps://tomaszjaniak.wordpress.com/plugins-2/ [access: 01.12.2014].

[7] Langtangen H.P.: Python scripting for computational science. Springer, Berlin
2004.

Fig. 7. Daily shading analysis. The analysis was performed in the algorithm of the author.
In addition, added photorealistic ground texture. The color palett e of visualization has been

defi ned by the author

44 M. Ilba

[8] McKinney W..: Python for Data Analysis. O’Reilly Media, 2013.
[9] Mullen T.: Blender: mistrzowskie animacje 3D. Wydawnictwo Helion, Gliwice

2010.
[10] NYC Open Data, [on-line:] htt p://www.data.cityofnewyork.us [access:

01.12.2014].
[11] Twarowski M.: Słońce w architekturze. Arkady, Warszawa 1996.
[12] Xuewen L., Qiuhai H., Yan Z.: Texture Baking Techniques on Construction of Vir-

tual Reality Interactive Scenes. Applied Mechanics and Materials, vol. 55–57,
2011, pp. 478–483.

