PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decomposition Processes in Coastal Wetlands : The Importance of Suaeda salsa Community for Soil Cellulose Decomposition

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coastal wetlands are ecologically important all over the world, and they are relatively unstable with dramatic changes in aboveground vegetation. However, it is still unclear how the aboveground vegetation changes will influence the functioning of coastal wetland ecosystems, especially the decomposition processes. Here, we carried out a cotton strip experiment to examine the effects of Suaeda salsa community on the soil properties and the associated cellulose decomposition rates in the coastal wetlands of Liao River delta (NE China). Our results showed that S. salsa community significantly affected the contents of soil C, N, P, base cations, organic matter and the soil electrical conductivity (EC), and such effects might vary among different types or densities of aboveground vegetation. The soil cellulose decomposition rate (in terms of cotton strip tensile strength loss, CTSL) was slowed down when aboveground S. salsa communities are experiencing degradation or have been totally replaced by Phragmites australis communities. Moreover, there were positive partial correlations between soil N and CTSL, and between soil EC and CTSL, but a negative partial correlation between soil C and CTSL. Our results emphasized the importance of S. salsa community in determining the soil cellulose decomposition rate in this coastal region. The results suggest that vegetation degradation in coastal wetlands might lead to various changes in soil properties and hence affect other aspects of ecosystem functioning and services, especially nutrient cycling.
Rocznik
Strony
217--226
Opis fizyczny
Bibliogr. 44 poz., mapa, tab., wykr.
Twórcy
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
  • College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
autor
  • State Forestry Administration Survey Planning and Design Institute, Beijing, China
autor
  • Liaoning Normal University, Dalian, Liaoning, China
Bibliografia
  • [1] Adam P.1993 – Saltmarsh ecology – Cambridge University Press.
  • [2] Adger W. N., Hughes T. P., Folke C., Carpenter S. R., Rockström J.2005 – Social-ecological resilience to coastal disasters – Science, 309: 1036-1039.
  • [3] Bardgett R.2005 – The biology of soil: a community and ecosystem approach – Oxford University Press.
  • [4] Belluco E., Camuffo M., Ferrari S., Modenese L., Silvestri S., Marani A., Marani M.2006 – Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing – Remote Sens. Environ.105: 54-67.
  • [5] Chew I., Obbard J., Stanforth R.2001 – Microbial cellulose decomposition in soils from a rifle range contaminated with heavy metals – Environ. Pollut.111: 367-375.
  • [6] Cornelissen J., Thompson K.1997 – Functional leaf attributes predict litter decomposition rate in herbaceous plants – New Phytol.135: 109-114.
  • [7] Cornwell W. K., Cornelissen J. H., Amatangelo K., Dorrepaal E., Eviner V. T., Godoy O., Hobbie S. E., Hoorens B., Kurokawa H., Pérez-Harguindeguy N.2008 – Plant species traits are the predominant control on litter decomposition rates within biomes worldwide – Ecol. Lett.11: 1065-1071.
  • [8] Costanza R., d'Arge R., De Groot R., Farber S., Grasso M., Hannon B., Limburg K., Naeem S., O'neill R. V., Paruelo J.1997 – The value of the world's ecosystem services and natural capital – Nature, 387: 253-260.
  • [9] Dawson T. P., Berry P. M., Kampa E.2003 – Climate change impacts on freshwater wetland habitats – J. Nat. Conserv.11: 25-30.
  • [10] Fan P., Zhang S., Chu D., Shi X.2015 – Decomposition of Suaeda salsa and Phragmites australis in the degraded wetland of Shaohai: Species and tissue difference implications on ecosystem restoration – J. Soil Water Conserv.70: 322-328.
  • [11] French D.1988 – Seasonal patterns in cotton strip decomposition in soils (In: Cotton Strip Assay: An Index of Decomposition in Soils. Eds: A. F. Harrison, P. Latter, D. W. H. Walton) – Institute of Terrestrial Ecology: Grange-over-Sands, pp. 46-59.
  • [12] Gedney N., Cox P. M., Huntingford C.2004 – Climate feedback from wetland methane emissions – Geophys. Res. Lett.31:1-4.
  • [13] Gessner M. O., Chauvet E., Dobson M.1999 – A perspective on leaf litter breakdown in streams – Oikos, 377-384.
  • [14] Harrison A. F., Latter P. M., Walton D. W. H.1988 – Cotton strip assay: an index of decomposition in soils – Grange-overSands, ITE.
  • [15] Hieber M., Gessner M. O.2002 – Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates – Ecology, 83: 1026-1038.
  • [16] Hobbie S. E.1992 – Effects of plant species on nutrient cycling – Trends Ecol. Evol.7: 336-339.
  • [17] Hooper D. U., Chapin F., Ewel J., Hector A., Inchausti P., Lavorel S., Lawton J., Lodge D., Loreau M., Naeem S.2005 – Effects of biodiversity on ecosystem functioning: a consensus of current knowledge – Ecol. Monogr.75: 3-35.
  • [18] Jackson J. B., Kirby M. X., Berger W. H., Bjorndal K. A., Botsford L. W., Bourque B. J., Bradbury R. H., Cooke R., Erlandson J., Estes J. A.2001 – Historical overfishing and the recent collapse of coastal ecosystems – Science, 293: 629-637.
  • [19] Jia M., Wang Z., Liu D., Ren C., Tang X., Dong Z.2015 – Monitoring poss and recovery of salt marshes in the Liao River Delta, China – J. Coastal. Res.31: 371-377.
  • [20] Keddy P. A.2010 – Wetland ecology: principles and conservation – Cambridge University Press.
  • [21] Latter P., Howson G.1977 – Use of cotton strips to indicate cellulose decomposition in the field – Pedobiologia, 17: 145-155.
  • [22] Liu F., Liu Y., Wang G., Song Y., Liu Q., Li D., Mao P., Zhang H.2015 – Seasonal variations of C: N: P stoichiometry and their trade-offs in different organs of Suaeda salsa in Coastal Wetland of Yellow River Delta, China – PloS ONE.10: e0138169.
  • [23] Lotze H. K.2005 – Radical changes in the Wadden Sea fauna and flora over the last 2,000 years – Helgoland Mar. Res.59: 71.
  • [24] Lotze H. K., Milewski I.2004 – Two centuries of multiple human impacts and successive changes in a North Atlantic food web – Ecol. Appl.14: 1428-1447.
  • [25] Mao R., Zhang X. H., Meng H. N.2014 – Effect of Suaeda salsa on soil aggregateassociated organic carbon and nitrogen in tidal salt marshes in the Liaohe Delta, China – Wetlands, 34: 189-195.
  • [26] Mendelssohn I. A., Sorrell B. K., Brix H., Schierup H. H., Lorenzen B., Maltby E.1999 – Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark – Aquat. Bot.64: 381-398.
  • [27] Morrissey E. M., Gillespie J. L., Morina J. C., Franklin R. B.2014 – Salinity affects microbial activity and soil organic matter content in tidal wetlands – Global Change Biol.20: 1351-1362.
  • [28] Pan X., Berg M. P., Butenschoen O., Murray P. J., Bartish I. V., Cornelissen J. H., Dong M., Prinzing A.2015 – Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss – Proc. R. Soc. B.282: 20150103.
  • [29] Pan X., Cornelissen J. H., Zhao W. W., Liu G. F., Hu Y. K., Prinzing A., Dong M., Cornwell W. K.2014 – Experimental evidence that the Ornstein-Uhlenbeck model best describes the evolution of leaf litter decomposability – Ecol. Evol.4: 3339-3349.
  • [30] Pandolfi J. M., Bradbury R. H., Sala E., Hughes T. P., Bjorndal K. A., Cooke R. G., McArdle D., McClenachan L., Newman M. J., Paredes G.2003 – Global trajectories of the long-term decline of coral reef ecosystems – Science, 301: 955–958.
  • [31] Rapp J., Shear T., Robison D.2001 – Soil, groundwater, and floristics of a south-eastern United States blackwater swamp 8 years after clearcutting with helicopter and skidder extraction of the timber – Forest Ecol. Manag.149: 241-252.
  • [32] Singh N.1982 – Cellulose decomposition by some tropical aquatic hyphomycetes – Trans. British Mycol. Soc.79: 560-561.
  • [33] Slocum M. G., Roberts J., Mendelssohn I. A.2009 – Artist canvas as a new standard for the cotton strip assay – J. Plant Nutr. Soil Sci.172: 71-74.
  • [34] Sun Z., Mou X., Sun W.2016 – Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis, Suaeda salsa and Suaeda glauca litter in newly created marshes of the Yellow River estuary, China – Ecol. Eng.93: 175-186.
  • [35] Sun Z., Mou X., Tian H., Song H., Jiang H., Zhao J., Sun W., Sun W.2013 – Phosphorus biological cycle in the different Suaeda salsa marshes of the Yellow River estuary, China – Environ. Earth Sci.69: 2595-2608.
  • [36] Sun Z., Mou X., Zhang D., Sun W., Hu X., Tian L.2017 – Impacts of burial by sediment on decomposition and heavy metal concentrations of Suaeda salsa in intertidal zone of the Yellow River estuary, China – Mar. Pollut. Bull.116: 103-112.
  • [37] Swift M. J., Heal O. W., Anderson J. M.1979 – Decomposition in terrestrial ecosystems – Univ. California Press, Berkeley.
  • [38] Tiegs S., Langhans S., Tockner K., Gessner M.2007 – Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats – J. N. Am. Benthol. Soc.26: 70-77.
  • [39] Vyšná V., Dyer F., Maher W., Norris R.2014 – Cotton-strip decomposition rate as a river condition indicator–Diel temperature range and deployment season and length also matter – Ecol. Indic.45: 508-521.
  • [40] Wang L., Li X. Z., Hu Y. M., Guo D. F.2003 – Analysis of habitat pattern change of redcrowned cranes in the Liaohe delta using Spatial Diversity Index – Chinese Geogr. Sci.13: 164-170.
  • [41] Webster J., Benfield E.1986 – Vascular plant breakdown in freshwater ecosystems – Annu. Rev. Ecol. Syst.17: 567-594.
  • [42] Worm B., Barbier E. B., Beaumont N., Duffy J. E., Folke C., Halpern B. S., Jackson J. B., Lotze H. K., Micheli F., Palumbi S. R.2006 – Impacts of biodiversity loss on ocean ecosystem services – Science, 314: 787-790.
  • [43] Wu T., Zhao D., Kang J., Zhang F., Cheng L.2011 – Suaeda salsa dynamic remote monitoring and biomass remote sensing inversion in Shuangtaizi River estuary – Ecology and Environment, 20: 24-29.
  • [44] Yang W., Zhao H., Chen X., Yin S., Cheng X., An S.2013 – Consequences of shortterm C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China – Ecol. Eng.61: 50-57.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03cd0802-1db9-4241-9f1c-a1d9107d1b6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.