PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The estimation of CO2 storage potential of a gas-bearing shale succession at the early stage of reservoir characterization : a case study from the Baltic Basin (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimation of the CO2 storage potential of gas-bearing shales in the Lower Paleozoic Baltic Basin is at an early stage of reservoir exploration and production, based on data from one vertical exploration borehole, supplemented with some information from adjacent boreholes. The borehole section examined is 120 m long and comprises three intervals enriched with organic matter separated by organic-poor intervals. In our approach, the storage capacity is represented by: (1) sorption potential of organic matter, (2) open pore space and (3) potential fracture space. The potential for adsorbed CO2 was determined from Langmuir isotherm parameters taken from laboratory measurements and recalculated from CH4 adsorption curves. The pore space capacity was estimated in two ways: by utilizing results of laboratory measurements of dynamic capacity for pores >100 nm and using results of helium porosimetry, the first of these being considered as the most relevant. Due to the low permeability of the shale matrix we have adopted the standard assumption that the CO2 is able to reach effectively only 10% of the theoretical total sorption and pore volume. For hydraulic fracture space, the theoretical maximum opening of vertical fractures in the direction of minimum horizontal stress was considered, decreased by the expected portion of fracturing fluid flowback and by partial fracture closure by burial compaction. The effectiveness of three CO2 storage categories for the individual organic-rich and organic-poor shale units shows an obvious positive correlation of TOC content with the storage efficiency by sorption and within pore space, and a negative correlation with the storage efficiency in hydraulic fractures. It was estimated that sorption, over the maximum storage interval (120 m thick), is responsible for ~76% of total storage capacity, pore space accounts for 13% (for the most relevant porosity model) while the contribution of fractures is 11%. In the minimum storage interval (35 m thick, including the best quality shales) the estimated proportions of sorption, pore space and fractures in the total storage capacity are 84, 10 and 6% respectively. Finally, the result for the best quality storage interval (35 m thick) was compared with the Marcellus Shale of similar thickness (average ~38 m) and with other options of CO2 storage in Poland. The most organic-rich units in the area studied have a CO2 storage capacity efficiency (i.e. storage capacity per volume unit of shale) only slightly less than average for the Marcellus Shale, because sorption capacity – the dominant component – is comparable in both cases. However, the open pore space capacity in the Marcellus Shale appears to be far higher, even if the potential fracture space calculated for the borehole studied is taken into consideration, probably because the free gas content in the Marcellus Shale is far higher than in the Baltic Basin. CO2 storage in depleted shale gas wells is not a competitive solution compared to storage in saline aquifer structures or in larger hydrocarbon fields.
Rocznik
Strony
art. no. 3
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Andrews, I.J., 2013. The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change, London, UK.
  • 2. Ahmed, U., Meehan, D.N., 2016. Unconventional Oil and Gas Resources: Exploitation and Development. CRC Press & Taylor & Francis Group, Boca Raton.
  • 3. Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., Akkutlu, Y.I., Sondergeld, C.H., 2010. New Pore-scale Considerations for Shale Gas in Place Calculations. SPE 131772.
  • 4. Birdsell, D.T., Rajaram, H., Dempsey, D., Viswanathan, H.S., 2015. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. American Geophysical Union Publications, 51: 7159-7188.
  • 5. Chojnacki, S., Marzec, D., 2013. Opracowanie badań geofizyki wiertniczej (in Polish). In: Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji ropy naftowej i gazu ziemnego Kartuzy-Szemud nr 72/2009/p, m., gm., Żukowo, Kartuzy, pow. kartuski, gdański z siedzibą w Pruszczu Gdańskim, kościerski, woj. pomorskie (ed. D. Strzelecka), Geofizyka Toruń, Toruń. Arch. CAG PIG, Warszawa, nr inw. 9901/2017.
  • 6. Darłak, N., Kowalska-Włodarczyk, M., Such, P., 2011. Methodological aspects of porosity and pore space measurements in shale rocks. Nafta-Gaz, 67: 326-330.
  • 7. Davies, R.J., Mathias, S.A., Moss, J., Hustoft, S., Newport, L., 2012. Hydraulic fractures: how far can they go? Marine and Petroleum Geology, 37: 1-6.
  • 8. Economides, M.J., Nolte, K.G. (eds.), 2000. Reservoir Stimulation, 3rd Edition. John Wiley & Sons, New York.
  • 9. Edwards, R.W., Celia, M.A., Bandilla, K.W., Doster, F., Kanno, C.M., 2015. A model to estimate carbon dioxide injectivity and storage capacity for geological sequestration in shale gas wells. Environmental Science and Technology, 49: 9222-9229.
  • 10. EIA (U.S. Energy Information Administration), 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. June 2013. Washington DC.
  • 11. Fisher, K., Warpinski, N., 2011. Hydraulic Fracture-Height Growth: Real Data. SPE 145949: 1-18.
  • 12. Gajek, W., Trojanowski, J., Malinowski, M., Jarosiñski, M., 2018. Results of downhole microseismic monitoring at a hydraulic fracturing site in Poland, Part 1: events location and stimulation performance. Interpretation, 6: SH39-SH48.
  • 13. Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A., 2014. Natural fractures in shale: a review and new observations. AAPG Bulletin, 98: 2165-2216.
  • 14. Godec, M., Hunter, J., Basava-Reddi, L., 2013a. Potential global implications of gas production from shales and coal for geological CO2 storage. Energy Procedia, 37: 6656-6666.
  • 15. Godec, M., Koperna, G., Petrusak, R., Oudinot, A., 2013b. Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in the Eastern United States. International Journal of Coal Geology, 118: 95-104.
  • 16. Godec, M., Koperna, G., Petrusak, R., Oudinot, A., 2013c. Assessment of factors influencing CO2 storage capacity and injectivity in Eastern U.S. Gas Shales. Energy Procedia, 37: 6644-6655.
  • 17. Godec, M., Koperna, G., Petrusak, R., Oudinot, A., 2014. Enhanced gas recovery and CO2 storage in gas shales: a summary review of its status and potential. Energy Procedia, 63: 5849-5857.
  • 18. Goodman, A., Fukaib, I., Dilmore, R., Frailey, A., Bromhal, G., Soeder, D., Gorecki, Ch., Peck, W., Rodosta, T., Guthrie, G., 2014. Methodology for assessing CO2 storage potential of organic-rich shale formations. Energy Procedia, 63: 5178-5184.
  • 19. Heller, R., Zoback, M., 2014. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources, 8: 14-24.
  • 20. Higgins, S.M., Goodwin, S.A., Donald, A., Bratton, T.R., Tracy, G. W., 2008. Anisotropic stress models improve completion design in the Baxter Shale. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, doi: 10.2118/115736-MS.
  • 21. Huang, L., Ning, Z., Wang, Q., Zhang, W., Cheng, Z., Wu, X., Qin, H., 2018. Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery. Applied Energy, 210: 28-43.
  • 22. IPCC, 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working group III of the Intergovernmental Panel on Climate Change (eds. B. Metz, O. Davidson, H.C. de Coninck, M. Loos and L.A. Meyer). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 23. Jarosiński, M., 2006. Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly, 50 (3): 303-321.
  • 24. Jarosiński, M., Wójcicki, A., 2016. CO2 storage in gas-bearing shales of the Baltic basin. EERA Conference 2016 in Birmingham, 24-25.11.2016 (presentation at the conference website: https://www.eera-set.eu/wp-content/uploads/X1_PGI-CO2-sEGR.pdf).
  • 25. Jaworowski, K., 2002. Profil dolnego paleozoiku w północnej Polsce - zapis kaledońskiego stadium rozwoju basenu bałtyckiego (in Polish). Posiedzenia Naukowe Państwowego Instytutu Geologicznego, 58: 9-10.
  • 26. Kalantari-Dahaghi, A., 2010. Numerical simulation and modelling of enhanced gas recovery and CO2 sequestration in shale gas reservoirs: a feasibility study, Society of Petroleum Engineers, Society of Petroleum Engineers - SPE International Conference on CO2 Capture, Storage, and Utilization 2010, doi: 10.2118/139701-MS.
  • 27. Kang, S.M., Fathi, E., Ambrose, R., Akkutlu, I., Sigal, R., 2011. Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16: 842-855.
  • 28. Krzyżak, A.T., Habina-Skrzyniarz, I., Machowski, G., Mazur, W., 2020. Overcoming the barriers to the exploration of nanoporous shales porosity. Microporous and Mesoporous Materials, 298: 1387-1811.
  • 29. Kurniawan, Y., Bhatia, S.K., Rudolph, V., 2006. Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons. AIChE Journal, 52: 957-967.
  • 30. Ladage, S., Berner, U., 2012. Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland. BGR, May 2012.
  • 31. Leśniak, G. (ed.), 2013. Kompleksowa analiza i interpretacja badań rdzeni wiertniczych oraz płynów pochodzących z otworu Borcz-1 (in Polish). Instytut Nafty i Gazu, Kraków. In: Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów ztoża kopaliny wykonanych na obszarze koncesji ropy naftowej i gazu ziemnego Kartuzy-Szemud nr 72/2009/p, m., gm., Żukowo, Kartuzy, pow. kartuski, gdański z siedzibą w Pruszczu Gdańskim, kościerski, woj. pomorskie (ed. D. Strzelecka). Arch. CAG PIG, Warszawa, nr inw. 9901/2017.
  • 32. Lutyński, M., Waszczuk, P., Słomski, P., Szczepański, J., 2017. CO2 sorption of Pomeranian gas bearing shales - the effect of clay minerals. Energy Procedia, 125: 457-466.
  • 33. Masłowski, M., 2018. Studies on the effect of the proppant embedment phenomenon on the effective packed fracture in shale rock. Acta Geodynamica et Geomaterialia, 15: 105-115.
  • 34. Maxwell, S.C., 2011. Hydraulic fracture height growth. Recorder, 36: 18-22.
  • 35. Middleton, R., Viswanathan, H., Curriera, R., Gupta, R., 2014. CO2 as a fracturing fluid: potential for commercial-scale shale gas production and CO2 sequestration. Energy Procedia, 63: 7780-7784.
  • 36. Miljanović, E., Jabłoński, S., 2013. Końcowy raport desorpcyjny (in Polish). Geokrak Sp. z o.o., Kraków. In: Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji ropy naftowej i gazu ziemnego Kartuzy-Szemud nr 72/2009/p, m., gm., Żukowo, Kartuzy, pow. kartuski, gdański z siedzibą w Pruszczu Gdańskim, kościerski, woj. pomorskie (ed. D. Strzelecka). Arch. CAG PIG, Warszawa, nr inw. 9901/2017.
  • 37. Modliński, Z. (ed.), 1982. Kościerzyna IG-1 (in Polish). Profile głębokich otworów wiertniczych Instytutu Geologicznego, 54.
  • 38. Nuttall, B., Eble, C.F. Drahovzal, J.A., Bustin, M., 2005. Analysis of Devonian Black Shales for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production, Report DE-FC26-02NT41442 prepared by the Kentucky Geological Survey, University of Kentucky, for the U.S. Department of Energy, National Energy Technology Laboratory, December 30.
  • 39. PGI-NRI, 2012. Assessment of Shale Gas and Shale Oil Resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin in Poland. Warsaw, Poland.
  • 40. Popova, O., 2017. Marcellus Shale Play, Geology review. EIA U.S. Energy Information Administration (https://www.eia.gov/ maps/pdf/MarcellusPlayUpdate_Jan2017.pdf).
  • 41. Poprawa, P., 2020. Lower Paleozoic oil and gas shale in the Baltic-Podlasie-Lublin Basin (central and eastern Europe) - a review. Geological Quar terly, 64 (3): 515-566.
  • 42. Poprawa, P., Šliaupa, S., Stephenson, R.A., Lazauskienė, J., 1999. Late Vendian-Early Palaeozoic tectonic evolution of the Baltic Basin: regional implications from subsidence analysis. Tectonophysics, 314: 219-239.
  • 43. Rezaee, R., 2015. Fundamentals of Gas Shale Reservoirs. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • 44. Rider, M., 1996. The geological interpretation of well logs. Whittles Publishing, Roseleigh House, Latheronwheel.
  • 45. Schaef, H.T., Davidson, C.L., Owen, A.T., Miller, Q.R.S., Loring, J.S., Thompson, C.J., Bacon, D.H., Glezakou, V.A., McGrail, B.P., 2014. CO2 utilization and storage in shale gas reservoirs: experimental results and economic impacts. Energy Procedia, 63: 7844-7851.
  • 46. Shi, J.Q., Durican, S., 2005. CO2 storage in deep unminable coal seams. Oil & Gas Science and Technology - Revued'IFP, 60: 547-558.
  • 47. Stadtmuller, M., Lis-Śledziona, A., Słota-Valim, M., 2018. Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland. Interpretation, 6: SH91-SH106.
  • 48. Šliaupa, S., Lojka, R., Tasáryova, Z., Kolejka, V., Hladik, V., Kotulová, J., Kucharič, L., Fejdi, V., Wójcicki, A., Tarkowski, R., Uliasz-Misiak, B., Šliaupienè, R., Nulle, I., Pomeranceva, R., Ivanova, O., Shogenova, A., Shogenov, K., 2013. CO2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States. Geological Quarterly, 57 (2): 219-232.
  • 49. Taggart, I., 2010. Extraction of dissolved methane in brines by CO2 injection: Implication for CO2 sequestration. SPE Reservoir Evaluation & Engineering, 13: 791-804.
  • 50. Taghichian, A., Zaman, M., Devegowda, D., 2014. Stress shadow size and aperture of hydraulic fractures in unconventional shales. Journal of Petroleum Science and Engineering, 124: 209-221.
  • 51. Tao, Z., Clarens, A., 2013. Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47: 11318-11325.
  • 52. Trengove, R.D., Wakenham, W.A., 1987. The viscosity of carbon dioxide, methane, and sulfur hexafluoride in the limit of zero density. Journal of Physical and Chemical Reference Data, 16: 175-187.
  • 53. Ver Straeten, C.A., Baird, G.C., Brett, C., Lash, G., Over, J., Karaca, C., Jordan, T., Blood, R., 2011. The Marcellus Subgroup in its type area, Finger Lakes area of New York and beyond. New York State Geological Association, Annual Meeting Guidebook, 83: 23-86.
  • 54. Wei, G., Xiong, W., Gao, S., Hu, Z., Liu, H., Yu, R., 2013. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Exploration and Development, 40: 514-519.
  • 55. Wojtowicz, M., Jarosiński, M., 2019. Reconstructing the mechanical parameters of a transversely-isotropic rock based on log and incomplete core data integration. International Journal of Rock Mechanics and Mining Sciences, 115: 111-120.
  • 56. Wójcicki, A., Nagy, S., Lubaś J., Chećko, J., Tarkowski, R., 2014. Assessment of formations and structures suitable for safe CO2 storage (in Poland) including the monitoring plans (summary). PGI-NRI, Warsaw (final report of national programme available at PGI website: skladowanie.pgi.gov.pl).
  • 57. Yuan, Y., Rezae, R., 2019. Comparative porosity and pore structure assessment in shales: measurement techniques, influencing factors and implications for reservoir characterization. Energies, 12: 2094.
  • 58. Zhou, W., Zhang, Z., Wang, H., Yang, X., 2019. Molecular investigation of CO2/CH4 competitive adsorption and confinement in realistic shale kerogen. Nanomaterials, 9: 1646.
  • 59. Zijp, M.H.A.A., Nelskamp, S., Doornenbal, J.C., 2017. Resource estimation of shale gas and shale oil in Europe. Report T7b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by European Commission Joint Research Centre to GEUS.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03cb62ab-dd84-441e-9532-5dca1b6a8c43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.