PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of the Type of Admixture on the Properties of Polyacrylonitrile Membranes Modified With Nanotubes, Graphene Oxide and Graphene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of research on the production of composite polyacrylonitrile (PAN) membranes with nanotubes (MWCNT), graphene (RG) and graphene oxide (GO) addition. All of the specified additions differ diametrically in terms of properties, starting from the spatial structure of the particles, to the chemical properties. The membranes were obtained using phase inversion method from a solution of N,N-dimethylformamide (DMF). Subsequently, the impact of the nano-addition on the transport and separation properties of the membranes was investigated using Millipore AMICON ultrafiltration kit. Membranes with graphene addition (PAN/RG) are characterized by the best transport properties and the highest specific permeate flux values in the range of ~913÷1006 dm3/m2×h for the working pressure of 2.0 MPa. In order to test the separation properties, electroplating wastewater generated in one of the Silesian galvanizing plants was used. The qualitative and quantitative composition of the wastewater was tested by means of UV-Vis spectrophotometer (HACH) and absorption atomic spectrometry (AAS). The ultrafiltration process carried out on composite membranes allows for the complete removal of phosphate ions and ~88÷94% removal of iron from the waste water. The rejection coefficient of the remaining metals is high: ~35÷85% for copper and ~17÷100% for cadmium.
Rocznik
Strony
72--81
Opis fizyczny
Bibliogr. 42 poz., tab., rys.
Twórcy
  • Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
autor
  • Faculty of Materials, Civil and Environmental Engineering, Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
Bibliografia
  • 1. Ahn C.H., Baek Y., Lee C., Kim S.O., Kim S., Lee S., Kim S.H., Bae S.S., Park J., Yoon J., 2012. Carbon nanotube-based membranes: fabrication and application to desalination. Journal of Industrial Engineering Chemistry, 18 (5), 1551–1559.
  • 2. Arai J., Haraya K., Idemoto Y., Ikegami T., Kitamoto D., Koura N., Nagata M., Negishi H., Nouzaki K., Yanagishita H. 2002. Preparation of polyacrylonitrile ultrafiltration membranes for wastewater treatment. Desalination, 144, 53–59.
  • 3. Bhadra M., Roy S., Mitra S. 2016. Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination, 378, 37–43.
  • 4. Das R., Ali M. E.,. Hamid S. B. A, Ramakrishna S., and Chowdhury Z. Z. 2014. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97–109.
  • 5. Das R., Ali Md. E., Bee S., Hamid A., Ramakrishna S., Chowdhury Z. Z. 2014. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97–109.
  • 6. Elimelech M., Phillip W.A. 2011. The future of seawater desalination: energy, technology, and the environment. Science 333 (6043), 712–717.
  • 7. Fryczkowska B. Przywara L., Turek T. 2017. Zastosowanie membran kompozytowych PAN/ PANI do oczyszczania ścieków przemysłowych powstających podczas obróbki metali. Inżynieria Ekologiczna, 18(2), 21–29.
  • 8. Fryczkowska B., Sieradzka M., Sarna E., Fryczkowski R., Janicki J. 2015. Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 132, 46.
  • 9. Goh K., Setiawanc L., Wei L., Jiang W., Wang R., Chen Y. 2013. Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. Journal of Membrane Science, 446, 244–254.
  • 10. Goh P. S., Ismail A. F. 2015. Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination, 356, 115–128.
  • 11. Goh P. S., Ismail A. F., Ng B. C. 2013. Carbon nanotubes for desalination: Performance evaluation and current hurdles. Desalination, 308, 2–14.
  • 12. Han Y., Xu Z., and Gao C. 2013. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 23(29), 3693–3700.
  • 13. Hinds B. J., Chopra N., Rantell T., Andrews R., Gavalas V., and Bachas L. G. 2004. Aligned multiwalled carbon nanotube membranes. Science (New York, N.Y.), 303(5654), 62–65.
  • 14. Hu M. and Mi B. 2014. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. Journal of Membrane Science, 469, 80–87.
  • 15. Huang S.-H, Lai J.-Y., Lee K.-R., Suen M.-C., Tsai H.-A., Ye Y.-L. 2011. Characterization and pervaporation dehydration of heat-treatment PAN hollow fiber membranes. J. Membr. Sci., 368, 254–263.
  • 16. Hummers W. S. and Offeman R. E. 1958 Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339–1339.
  • 17. Iovleva M. M., Smirnova V. N., and Budnitskii G. A. 2001. The solubility of polyacrylonitrile. Fibre Chemistry, 33(4), 262–264.
  • 18. Ismail A.F., Goh P.S., Sanip S.M., Aziz M. 2009. Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep. Purif. Technol., 70, 12–26.
  • 19. Kar S., Bindal R.C., Tewari P.K. 2012. Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7, 385–389.
  • 20. Kim H.W., Yoon H.W., Yoon S.M., Yoo B.M., Ahn B.K., Cho Y.H., et al. 2013. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 342, 91–95.
  • 21. Kim I.-C., Lee K.-H., Yun H.-G. 2002. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment proces. J. Membr. Sci., 199, 75–84.
  • 22. Lee S., Kim j., Ku B.-C., Kim J., and Joh H.-I. 2012. Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization. Advances in Chemical Engineering and Science, vol. 2(2), 275–282.
  • 23. Lohokare H., Bhole Y., Taralkar S., and Kharul U. 2011. Poly(acrylonitrile) based ultrafiltration membranes: Optimization of preparation parameters. Desalination, 282, 46–53.
  • 24. Lopez-Lorente A.I., Simonet B.M., Valcarcel M. 2010. The potential of carbon nanotube membranes for analytical separations. Anal. Chem., 82, 5399–5407.
  • 25. Mahmoud K. A., Mansoor B., Mansour A., and Khraisheh M. 2015. Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356,. 208–225.
  • 26. Majeed S., Fierro D., Buhr K., Wind J., Du B., Boschetti-de-Fierro A., Abetz V. 2012. Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. Journal of Membrane Science, 403–404, 101–109.
  • 27. Mori S., Suzuki M., Tran T. D. 2007. Plasma modification of polyacrylonitrile ultrafiltration membrane. Thin Solid Films, 515, 4148–4152.
  • 28. Nair R. R., Wu H. A., Jayaram P. N., Grigorieva I. V., and Geim A. K. 2012. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene- Based Membranes. Science, 335(6067), 442–444.
  • 29. Noy A., Park H.G., Fornasiero F., Holt J.K., Grigoropoulos C.P., Bakajin O. 2007. Nanofluidics in carbon nanotubes, Nano Today, 2, 22–29.
  • 30. O’Hern S.C., Boutilier M.S.H., Idrobo J.C., Song Y., Kong J., Laoui T., et al. 2014. Selective ionic transport through tunable sub-nanometer pores in single-layer graphene membranes. Nano Letters, 14, 1234–1241.
  • 31. Palade S., Pantazi A., Vulpe S., Berbecaru C., Tucureanu V., Oprea O., Negrea R. F., Dragoman D. 2015. Tunable dielectric properties in polyacrylonitrile/multiwall carbon nanotube composites. Polymer Composites, 2015.
  • 32. Saito R., Dresselhaus G, Dresselhaus M. S. 1998. Phisical propetries of carbon nanotubes. Imperial College Pres, London.
  • 33. Sun P, Zhu M., Wang K., Zhong M., Wei J., Wu D., Xu Z., Zhu H. 2013. Selective ion penetration of graphene oxide membranes. ACS Nano, 7 (1), 428–437.
  • 34. Tian Z., Mahurin S.M., Dai S., Jiang D.-E. 2017. Ion-Gated Gas Separation through Porous Graphene. Nano Letters, 17 (3), 1802–1807.
  • 35. Turek T., Fryczkowska B., Przywara L. Zastosowanie membran z poliakrylonitrylu domieszkowanego tlenkiem grafenu do oczyszczania ścieków przemysłowych powstających podczas obróbki metali. Publikacja w przygotowaniu do druku.
  • 36. Wang F., Drzal L. T., Qin Y., Huang Z. 2015. Multifunctional graphene nanoplateles/cellulose nanocrystals composite paper. CompositePart B, 79, 521–529.
  • 37. Wang P., Wang Z., and Wu Z. 2012. Insights into the effect of preparation variables on morphology and performance of polyacrylonitrile membranes using Plackett–Burman design experiments. Chemical Engineering Journal, 193–194, 50–58.
  • 38. Wang Y., He Z., Gupta K.M., Shi Q., Lu R. 2017. Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon, 116, 120–127.
  • 39. Wypych G. 2012. Handbook of Polymers.
  • 40. You H., Li X., Yang Y., Wang B., Li Z., Wang X., Zhu M., Hsiao B. S. 2013. High flux low pressure thin film nanocomposite ultrafiltration membranes based on nanofibrous substrates. Separation and Purification Technology, 108, 143–151.
  • 41. Zhang J. et al. 2017. Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chemical Engineering Journal, 307, 643–649.
  • 42. Zhu J. et al. 2016. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon, 101, 272–280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03c15959-c5c5-4b71-86c3-3d9917233ba1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.