PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and characterization of iron coated carbon nanotubes/polymer composite for microwave absorption

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wytwarzanie i charakterystyka kompozytu na osnowie polimerowej z nanorurkami węglowymi pokrytymi żelazem do absorpcji mikrofalowej
Języki publikacji
EN
Abstrakty
EN
Electrical characteristics of iron coated multi-walled carbon nanotubes (MWNTs) along with ferromagnetic properties are very interesting nanomaterial for microwave absorption. In this research work, surface morphology, compositions and microwave absorption properties of polymer containing iron coated MWNTs have been investigated. Iron coated multi-walled carbon nanotubes composite were prepared by two simple steps method. In addition, microstructure and microwave absorption properties under frequency range 8÷13 GHz by means of FESEM, EDX &Vector network analyzer had shown. The maximum reflection loss is observed for Fe-coated MWNTs/polymer sample B is –20.86 dB and –18.13 dB at frequency 8.1 and 10.75 GHz respectively. And the maximum bandwidth window is available for sample C is 3.25 GHz from frequency 8.45 to 11.7 GHz with 3 mm thickness, which can be attributed to synergistic effect of improved impedance matching characteristic and superior microwave attenuation characteristic of the absorber. The reflection properties of the material enhanced with variations in the wt.% of Fe-coated MWNTs and polymer. In this research paper, Fe-coated MWNTs are analyzed as promising microwave absorbing material and combined utilization of dielectric loss and magnetic loss absorbent design shows great design flexibility and diversity in the frequency range 8÷13 GHz.
Rocznik
Strony
111--117
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • Department of Electronics and Communication Engineering, DAV University, Jalandhar-144012, Punjab, India
  • Department of Electronics and Communication Engineering, DAV University, Jalandhar-144012, Punjab, India
Bibliografia
  • [1] Rezende M.C., Talim R., Effect of the morphology and structure on the microwave absorbing properties of multi-walled carbon nanotube filled epoxy resin nanocomposites, Mater. Res. 2018, 21.
  • [2] Zakharychev E.A., Razov E.N., Semchikov Y.U.D., Zakharycheva N.S., Kabina M.A., Bakina L.I. et al., Radar absorbing properties of carbon nanotubes/polymer composites in the V-band, Bull. Mater. Sci. 2016, 39, 451-456.
  • [3] Liu X., Zhang Z., Wu Y., Absorption properties of carbon black/silicon carbide microwave absorbers, Compos. Part B[Internet] 2011, 42, 326-329.
  • [4] Abbas S.M., Dixit A.K., Chatterjee R., Goel T.C., Complex permittivity and microwave absorption properties of BaTiO3 – polyaniline composite, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2005, 123, 167-171.
  • [5] Singh P., Babbar V.K., Razdan A., Puri R.K., Goel T.C., Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites, J. Appl. Phys. 2000, 87, 4362-4366.
  • [6] Zhang X.J., Wang G.S., Cao W.Q., Wei Y.Z., Liang J.F., Guo L. et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride, ACS Appl. Mater. Interfaces 2014, 6, 7471-7478.
  • [7] Che R.C., Zhi C.Y., Liang C.Y., Zhou X.G., Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite, Appl. Phys. Lett. 2006, 88, 1-3.
  • [8] Cao M., Shi X., Fang X., Jin H., Hou Z., Zhou W., et al., Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites, App. Phys. Lett. 2007, 91, 203110, 89-92.
  • [9] Chen N., Mu G., Pan X., Gan K., Gu M., Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2007, 139, 256-260.
  • [10] Zhong S., He S., Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials, Sci. Rep. 2013, 3, 1-5.
  • [11] Zhong S., Ma Y., He S., Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials, Appl. Phys. Lett. 2014, 105, 2-6.
  • [12] Cui Y., Xu J., Hung Fung K., Jin Y., Kumar A., He S. et al., A thin film broadband absorber based on multi-sized nano-antennas, Appl. Phys. Lett. 2011, 99, 2531014.
  • [13] Singh B.P., Prabha, Saini P., Gupta T., Garg P., Kumar G. et al., Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation, J. Nanoparticle Res. 2011, 13, 7065-7074.
  • [14] Wang Z., Zhao G., Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz, Open J. Compos. Mater. 2013, 2013, 17-23.
  • [15] Munir A., Microwave radar absorbing properties of multi-walled carbon nanotubes polymer composites, A review, Adv. Polym. Technol. 2015, 36, 1-9.
  • [16] Sun X., Gao M., Li C., Wu Y., Microwave absorption characteristics of carbon nanotubes, IntechOpen 2011, 514.
  • [17] Qiu J., Qiu T., Fabrication and microwave absorption properties of magnetite nanoparticle-carbon nanotube-hollow carbon fiber composites, Carbon 2015,81, 20-28.
  • [18] Leonhardt B.A., Hampel S., Müller C., Mönch I., Koseva R., Ritschel M. et al., Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes, Chem. Vap. Depos. 2006.
  • [19] Mathur R.B., Pande S., Singh B.P., Dhami T.L., Polyvinyl alcohol-modified pithecellobium clypearia benth herbal residue fiber polypropylene composites, Polym. Compos. 2016, 37, 915-924.
  • [20] Saini P., Choudhary V., Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites, J. Nanoparticle Res. 2013, 15, 1-7.
  • [21] Gupta T.K., Singh B.P., Mathur R.B., Dhakate S.R., Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness, Nanoscale 2014, 6, 842-851.
  • [22] Hampel S., Leonhardt A., Selbmann D., Biedermann K., Elefant D., Mu C. et al., Growth and characterization of filled carbon nanotubes with ferromagnetic properties, Carbon 2006, 44, 2316-2322.
  • [23] Kim H., Sigmund W., Iron particles in carbon nanotubes. Carbon 2005, 43, 1743-8.
  • [24] Korneva G., Ye H., Gogotsi Y., Halverson D., Friedman G., Bradley J.C. et al., Carbon nanotubes loaded with magnetic particles, Nano Lett. 2005, 5, 879-884.
  • [25] Lang J., Yan X., Xue Q., Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors, J. Power Sources 2011, 196, 7841-7846.
  • [26] Monthioux M., Filling single-wall carbon nanotubes, Carbon 2002, 40, 1809-1823.
  • [27] Tasis D., Tagmatarchis N., Bianco A., Prato M., Chemistry of carbon nanotubes, Chem. Rev. 2006, 106, 1105-1136.
  • [28] Saini P., Choudhary V., Singh B.P., Mathur R.B., Dhawan S.K., Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range, Synth. Met. 2011, 161, 1522-1526.
  • [29] Weissker U., Hampel S., Leonhardt A., Carbon nanotubes filled with ferromagnetic materials, Materials (Basel) 2010, 3, 4387-4427.
  • [30] Qiu J., Qiu T., Fabrication and microwave absorption properties of magnetite nanoparticle-carbon nanotube-hollow carbon fiber composites, Carbon 2014, 6223, 00862-8.
  • [31] Lv R., Kang F., Gu J., Gui X., Wei J., Wang K. et al., Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber, Appl. Phys. Lett. 2008, 93, 223105, 1-4.
  • [32] Zhang Y., Huang Y., Li H., Electromagnetic wave absorption properties of nanoscaled ZnO, Intech. 2008, 1991, 570.
  • [33] Yang Y., Gupta M.C., Charlottes V., Dudley K.L., Lawrence R.W., Novel carbon nanotube - polystyrene foam composites for electromagnetic interference shielding, Nano Lett. 2005, 5, 2131-4.
  • [34] Lang J., Yan X., Xue Q., Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors, J. Power Sources 2011, 196, 7841-6.
  • [35] Zhao D., Zhang J., Li X., Shen Z., Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes, J. Alloys Compd. 2010, 505, 712-6.
  • [36] Li J., Lumpp J.K., Tower FPA. Electrical and Mechanical Characterization of Carbon Nanotube Filled Conductive Adhesive 2006.
  • [37] Nam I.W., Lee H.K., Jang J.H., Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites, Compos. Part A 2011, 42, 1110-8.
  • [38] Li N., Huang Y., Du F., He X., Lin X., Gao H. et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites, Nano Lett. 2006, 6, 1141-5.
  • [39] Amaral-labat G., Macutkevic J., Bistarelli S., Cataldo A., Electromagnetic shielding efficiency in K a-band: carbon foam versus epoxy/carbon nanotube composites, J. Nanophotonics 2012, 6, 061715.
  • [40] Zhao D., Li X., Shen Z., Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes, Compos. Sci. Technol. 2008, 68, 2902-8.
  • [41] Saini P., Choudhary V., Singh BP., Mathur R.B., Dhawan S.K., Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding, Mater. Chem. Phys. 2009, 113, 919-926.
  • [42] Choudhary V., Gupta A., Polymer/carbon nanotube nanocomposites, In: Carbon Nanotube - Polymer Nanocomposites, Siva Yellampalli (Ed), InTech. 2011, 65-90.
  • [43] Zhu H., Lin H., Guo H., Yu L., Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route. Mater. Sci. Eng. B. 2007, 138, 101-104.
  • [44] Zhao D.-L., Li X., Shen Z.-M., Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes, J. Alloys Compd. 2008, 471, 457-460.
  • [45] Wang C., Lv R., Huang Z., Kang F., Gu J., Synthesis and microwave absorbing properties of FeCo alloy particles /graphite nanoflake composites, J. Alloys Compd. 2011, 509, 494-8.
  • [46] Park K., Han J., Lee S., Yi J., A microwave absorbing hybrid composites containing Ni-Fe coated carbon nanofibers prepared by electroless plating, Compos. Part A 2011, 42, 573-8.
  • [47] Lang J., Yan X., Xue Q., Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors, J. Power Sources 2011, 196, 7841-6.
  • [48] Hao Z., Liu Q.F., Wang J.B., Coating carbon nanotubes with ferrites using an improved co-precipitation method, J. Compos. Mater. 2010, 44, 389-95.
  • [49] Liu Y., Jiang W., Li S., Li F., Electrostatic self-assembly of Fe3O4 nanoparticles on carbon nanotubes, Appl. Surf. Sci. 2009, 255, 7999-8002.
  • [50] Wang X., Zhao Z., Qu J., Wang Z., Qiu J., Fabrication and characterization of magnetic Fe3O4-CNT composites, J. Phys. Chem. Solids 2010, 71, 673-6.
  • [51] Dong C.-K., Li X., Zhang Y., Qi J.-Y., Yuan Y.-F., Fe3O4 nanoparticles decorated multi-walled carbon nanotubes and their sorption properties, Chem. Res. Chinese. Univ. 2009, 25, 936-40.
  • [52] Song S., Yang H., Rao R., Liu H., Zhang A., High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst, Appl. Catal. A Gen. 2010, 375, 265-71.
  • [53] Rosca I.D., Watari F., Uo M., Akasaka T., Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon 2005, 43, 3124-31.
  • [54] Fan X.J., Li X., Preparation and magnetic properties of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles, Xinxing Tan Cailiao/New Carbon Mater, Institute of Coal Chemistry, Chinese Academy of Sciences 2012, 27, 111-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03b7965c-0e9e-4922-96a7-a807a39a0dae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.