Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Our paper presents a nonparametric data-driven technique that can enhance the accuracy of robot kinematics models by reducing geometric and nongeometric inaccuracies. We propose this approach based on the theory of singular maps and the Large Dense Diffeomorphic Metric Mapping (LDDMM) framework, which has been developed in the field of Computational Anatomy. This framework can be thought of as a method for identifying nonlinear static models that encode a priori knowledge as a nominal model that we deform using diffeomorphisms. To tackle the kinematic calibration problem, we implement Calibration by Diffeomorphisms and obtain a solution using an image registration formalism. We evaluate our approach via simulations on double pendulum robot models, which account for both geometric and nongeometric discrepancies. The simulations demonstrate an improvement in the precision of the kinematics results for both types of inaccuracies. Additionally, we discuss the potential application of physical experiments. Our approach provides a fresh perspective on robot kinematics calibration using Calibration by Diffeomorphisms, and it has the potential to address inaccuracies caused by unknown or difficult-to-model phenomena.
Rocznik
Tom
Strony
art. no. e153230
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Poland
autor
- Faculty of Information and Communication Technology, Wrocław University of Science and Technology, Poland
Bibliografia
- [1] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin, Heidelberg: Springer-Verlag, 2007.
- [2] Z. Roth, B. Mooring, and B. Ravani, “An Overview of Robot Calibration,” IEEE J. Robot. Autom., vol. 3, no. 5, pp. 377–385, 1987.
- [3] W. Khalil and E. Dombre, Modeling, Identification and Control of Robots. Taylor & Francis, 2002.
- [4] G. Zhao, P. Zhang, G. Ma, and W. Xiao, “System identification of the nonlinear residual errors of an industrial robot using massive measurements,” Robot. Comput.-Integr. Manuf., vol. 59, pp. 104–114, 2019.
- [5] H.-N. Nguyen, J. Zhou, and H.-J. Kang, “A calibration method for enhancing robot accuracy through integration of an extended kalman filter algorithm and an artificial neural network,” Neurocomputing, vol. 151, pp. 996–1005, 2015.
- [6] S. Gadringer, H. Gattringer, A. Müller, and R. Naderer, “Robot Calibration combining Kinematic Model and Neural Network for enhanced Positioning and Orientation Accuracy,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 8432–8437, 2020.
- [7] X. Zhong, J. Lewis, and F.L. N-Nagy, “Inverse robot calibration using artificial neural networks,” Eng. Appl. Artif. Intell., vol. 9, no. 1, pp. 83–93, 1996.
- [8] K. Tchoń, “Calibration of Manipulator Kinematics: a Singularity Theory Approach,” IEEE Trans. Robot. Autom., vol. 8, no. 5, pp. 671–678, 1992.
- [9] W. Khalil, M. Gautier, and C. Enguehard, “Identifiable Parameters and Optimum Configurations for Robots Calibration,” Robotica, vol. 9, no. 1, pp. 63–70, Jan. 1991.
- [10] H. Zhuang and Z. Roth, “A Linear Solution to the Kinematic Parameter Identification of Robot Manipulators,” IEEE Trans. Robot. Autom., vol. 9, no. 2, pp. 174–185, Apr. 1993.
- [11] M. Abderrahim, A. Khamis, S. Garrido, and L. Moreno, “Accuracy and Calibration Issues of Industrial Manipulators,” in Industrial Robotics: Programming, Simulation and Applications, L. Kin, Ed. Pro Literatur Verlag, Germany / ARS, Austria, Dec. 2006.
- [12] L. Ma, P. Bazzoli, P.M. Sammons, R.G. Landers, and D.A. Bristow, “Modeling and Calibration of High-Order Joint-Dependent Kinematic Errors for Industrial Robots,” Robot. Comput.-Integr. Manuf., vol. 50, pp. 153–167, Apr. 2018.
- [13] T. Messay, R. Ordóñez, and E. Marcil, “Computationally Efficient and Robust Kinematic Calibration Methodologies and Their Application to Industrial Robots,” Robot. Comput.-Integr. Manuf., vol. 37, pp. 33–48, Feb. 2016.
- [14] M. Dehghani, R.A. McKenzie, R.A. Irani, and M. Ahmadi, “Robot-Mounted Sensing and Local Calibration for High-Accuracy manufacturing,” Robot. Comput.-Integr. Manuf., vol. 79, p. 102429, Feb. 2023.
- [15] C. Lightcap, S. Hamner, T. Schmitz, and S. Banks, “Improved Positioning Accuracy of the PA10-6CE Robot with Geometric and Flexibility Calibration,” IEEE Trans. Robot., vol. 24, no. 2, pp. 452–456, Apr. 2008.
- [16] J.H. Jang, S.H. Kim, and Y.K. Kwak, “Calibration of Geometric and Non-Geometric Errors of an Industrial Robot,” Robotica, vol. 19, no. 3, pp. 311–321, May 2001.
- [17] Y. Song, M. Liu, B. Lian, Y. Qi, Y. Wang, J. Wu, and Q. Li, “Industrial Serial Robot Calibration Considering Geometric and Deformation Errors,” Robot. Comput.-Integr. Manuf., vol. 76, p. 102328, Aug. 2022.
- [18] A. Alamdar etal., “Investigation of a Hybrid Kinematic Calibration Method for the “Sina” Surgical Robot,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5276–5282, Oct. 2020.
- [19] J. Chen, F. Xie, X.-J. Liu, and Z. Chong, “Elasto-geometrical Calibration of a Hybrid Mobile Robot Considering Gravity Deformation and Stiffness Parameter Errors,” Robot. Comput.-Integr. Manuf., vol. 79, p. 102437, Feb. 2023.
- [20] K. Deng, D. Gao, S. Ma, C. Zhao, and Y. Lu, “Elasto-geometrical Error and Gravity Model Calibration of an Industrial Robot Using the Same Optimized Configuration Set,” Robot. Comput.-Integr. Manuf., vol. 83, p. 102558, Oct. 2023.
- [21] L. Miao, Y. Zhang, Z. Song, Y. Guo, W. Zhu, and Y. Ke, “A Two-Step Method for Kinematic Parameters Calibration Based on Complete Pose Measurement — Verification on a Heavy-Duty Robot,” Robot. Comput.-Integr. Manuf., vol. 83, p. 102550, Oct. 2023.
- [22] J. Santolaria and M. Ginés, “Uncertainty Estimation in Robot Kinematic Calibration,” Robot. Comput.-Integr. Manuf., vol. 29, pp. 370–384, Apr. 2013.
- [23] R. He etal., “A Kinematic Calibration Method Based on the Product of Exponentials Formula for Serial Robot Using Position Measurements,” Robotica, vol. 33, no. 6, pp. 1295–1313, Jul. 2015.
- [24] T. Sun, B. Lian, S. Yang, and Y. Song, “Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory,” IEEE Trans. Robot., vol. 36, no. 3, pp. 816–834, Jun. 2020.
- [25] H.M. Balanji, A.E. Turgut, and L.T. Tunc, “A Novel Vision-Based Calibration Framework for Industrial Robotic Manipulators,” Robot. Comput.-Integr. Manuf., vol. 73, p. 102248, Feb. 2022.
- [26] R. Orozco and A. Ratajczak, “Image Registration and Calibration of Manipulator Kinematics,” in Postępy Robotyki, A. Mazur and C. Zieliński, Eds. Oficyna Wydawnicza Politechniki Warszawskiej, 2022, pp. 21–30, (in Polish).
- [27] M.F. Beg, M. Miller, A. Trouvé, and L. Younes, “Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms,” Int. J. Comput. Vis., vol. 61, pp. 139–157, Feb. 2005.
- [28] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, ser. Graduate texts in mathematics. Springer, 1974.
- [29] L. Younes, Shapes and diffeomorphisms, ser. Applied Mathematical Sciences. Springer, 2019, vol. 171.
- [30] M. Bruveris and D.D. Holm, Geometry of Image Registration: The Diffeomorphism Group and Momentum Maps. New York, NY: Springer New York, 2015, pp. 19–56.
- [31] S. Saitoh and Y. Sawano, Theory of reproducing kernels and applications, 1st ed., ser. Developments in Mathematics. Singapore, Singapore: Springer, Oct. 2016.
- [32] E. Novak, M. Ullrich, H. Woźniakowski, and S. Zhang, “Reproducing kernels of Sobolev spaces on R𝑑 and applications to embedding constants and tractability,” Anal. Appl., vol. 16, no. 05, p. 693–715, Aug. 2018.
- [33] W.J. Book, “Analysis of Massless Elastic Chains with Servo Controlled Joints,” J. Dyn. Syst. Meas. Control, vol. 101, no. 3, pp. 187–192, Sep. 1979.
- [34] B. Charlier, J. Feydy, J.A. Glaunès, F.-D. Collin, and G. Durif, “Kernel Operations on the GPU, with Autodiff, without Memory Overflows,” J. Mach. Learn. Res., vol. 22, no. 74, pp. 1–6, 2021.
- [35] F.J. Narcowich, “Generalized hermite interpolation and positive definite kernels on a Riemannian manifold,” J. Math. Anal. Appl., vol. 190, no. 1, pp. 165–193, 1995.
- [36] J. Urain, D. Tateo, J. Peters, and J. Jesus, “Learning Stable Vector Fields on Lie Groups,” IEEE Robot. Autom. Lett., vol. PP, pp. 1–8, Oct. 2022.
- [37] H. Wang, T. Gao, J. Kinugawa, and K. Kosuge, “Finding Measurement Configurations for Accurate Robot Calibration: Validation with a Cable-Driven Robot,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1156–1169, Oct. 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03b675c0-8dad-41a2-89b8-c134094137bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.