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Abstract: This paper studies the problem of robust stability
analysis for uncertain neutral-type neural networks with discrete
and distributed delays. By constructing an appropriate Lyapunov-
Krasovskii functional, new delay-dependent criteria are obtained.
We utilized the free-weighting matrices approach and bounding lem-
mas to estimate the derivative of the Lyapunov-Krasovskii func-
tional. The stability criterion are established in terms of linear ma-
trix inequalities (LMIs). Finally, a numerical example is presented
to illustrate the effectiveness of the proposed method.
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1. Introduction

For the past few decades neural networks have remained a hot research topic be-
cause of their wide applications in various fields, like image processing, pattern
recognition, fixed-point computation, associative memory and combinatorial op-
timization, see Arik (2000, 2014), Liu (1997), Syed Ali et al. (2017, 2018), Sara-
vanakumar et al. (2016), Syed Ali (2011, 2014), Ge, Hu and Guan (2014), Tian,
Xiong and Xu (2014). The existence of time delays is usually one of the primary
sources of instability and oscillations. Thus, the stability problem of neural net-
works with time delays has been widely considered by many researchers (see
Tian and Zhong, 2011; Song, 2008; Sun et al., 2009; He et al., 2007; Chen et al.,
2010; Zhang, Yue and Tian, 2009; Wang, Yang and Zuo, 2012; Thuan, Trinh and
Hien, 2016; or Kwon et al., 2012). Generally, stability criteria of neural networks
with time delays are classified into two categories: delay-independent stability

∗The work was supported by CSIR. 25(0274)/17/EMR-II dated 27/04/2017
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criteria and delay-dependent stability criteria. Delay-dependent stability cri-
teria are less conservative than delay-independent ones. Therefore, researchers
virtually always consider the delay-dependent stability criteria. Neural networks
usually have a spatial extent due to the presence of many parallel pathways of
a variety of axon sizes and lengths. Thus, there will be distribution of conduc-
tion velocities along these pathways and distribution of propagation delays and
both discrete and distributed delays should be considered in the neural network
model (see Syed Ali, Arik and Saravanakumar, 2005; Feng, Xu and Zou, 2009;
Shi et al., 2015). Therefore, much effort has been devoted to delay-dependent
stability analysis of delayed neural networks since, as indicated, delay-dependent
stability criteria are generally less conservative than delay-independent ones, es-
pecially when the size of the time delay is small. Recently, more attention is
paid towards robustness analysis for uncertain neural networks because of the
existence of modeling errors, external disturbance and parameter fluctuations
(Li et al., 2016; Syed Ali and Saravanan, 2016; Liu, 2009; Syed Ali, Saravanaku-
mar and Zhu, 2015).

Also, owing to the complicated dynamic properties of the neural cells in the
real world, the existing neural network models in many cases cannot charac-
terize the properties of the neural reaction process precisely. It is natural and
essential that systems will contain some information about the derivative of the
past state to describe further and model the dynamics for such complex neural
reactions. This new type of neural network is called a neutral neural network
or neural network of neutral type. The past state of the network affects the
current state in neutral type systems and they are investigated also under this
respect. Due to the existence of parameter variations, modeling errors, and pro-
cess uncertainties, stability analysis of neutral uncertainties systems has gained
a lot of attention (see Ren, Feng and Sun, 2016; Petersen, 1987; Feng, Xu and
Zou, 2009; Lee, Kwon and Park, 2010; Nagamani and Balasubramanian, 2012;
or Balasubramanian, Nagamani and Rakkiyappan, 2010).

This paper investigates the problem of asymptotic stability analysis for
neutral-type uncertain neural networks with Markovian jumping parameters and
time-varying delays. Some new delay-dependent sufficient conditions ensuring
the stability for uncertain neutral type networks with discrete and distributed
delays are obtained in terms of linear matrix inequalities (LMIs) by construct-
ing an appropriate Lyapunov-Krasovskii functional, which contains two triple
integral terms. By using some free weighting matrices, the proposed results are
obtained. Numerical results are provided to show the effectiveness of the given
results.

The main contribution of the paper lies in the following aspects:

• A novel Lyapunov-Krasovskii functional that involves double and triple
integrals terms is constructed to obtain stability conditions.
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• A new integral inequality is applied in terms of second-order reciprocally
convex inequality and Jensen’s inequality.

• New delay-dependent sufficient condition ensuring the stability is obtained
in terms of linear matrix inequalities (LMIs).

Notation: The notation used in this paper is standard. Rn denotes n di-
mensional Euclidean space, the superscript ”T ” denotes the transpose, and the
notation P > 0 (≥ 0) means P is real symmetric positive (semi-positive) definite,
max(P) and min(P) denote the maximum and minimum eigenvalues of matrix
P, respectively. I is an identity matrix with appropriate dimension. diag{ai}
denotes the diagonal matrix with the diagonal elements ai, (i = 1,2,. . .). The
asterisk ∗ in a matrix is used to denote a term that is induced by symmetry.

2. Problem formulation and main results

Consider the following uncertain neutral-type neural networks with discrete and
distributed delay:











ẋ(t) = −A(t)x(t) +W0(t)f(x(t)) +W1(t)f(x(t− τ)) + C(t)ẋ(t− h)+

W2(t)
∫ t

t−r
f(x(s))ds, t ≥ 0,

x(θ) = φ(θ), ∀θ ∈ [−η, 0], η = max{h, τ, r}

(1)

where x(t) ∈ Rn is the state vector; h, τ, t represent the neutral delay, discrete
delay and distributed delay, respectively. The initial condition φ(t) denotes a
continuous vector-valued initial function on the interval [−η, 0]. In (1),

A(t) = A+∆A(t),

W0(t) = W0 +∆W0(t),

W1(t) = W1 +∆W1(t),

C(t) = C +∆C(t),

W2(t) = W2 +∆W2(t),

where A, W0, W1, C and W2 ∈ Rn×n are constant matrices, and ∆A(t),
∆W0(t), ∆W1(t), ∆C(t) and ∆W2(t) are the unknown matrices, denoting the
uncertainties of the concerned system and satisfying the following:

[∆A(t) ∆W0(t) ∆W1(t) ∆C(t) ∆W2(t)]

= MF (t) [E−A EW0
EW1

EC EW2
] , (2)

where M,E−A, EW0
, EW1

, EC and EW2
are known matrices, F (t) is an un-

known, real and possibly time-varying matrix with Lebesgue measurable ele-
ments, which satisfies

FT (t)F (t) ≤ I. (3)
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For system (1), the nominal form is given as follows:











ẋ(t) = −Ax(t) +W0f(x(t)) +W1f(x(t− τ)) + Cẋ(t− h)+

W2

∫ t

t−r
f(x(s))ds, t ≤ 0,

x(θ) = φ(θ), ∀θ ∈ [−η, 0], η = max{h, τ, r}.

(4)

Lemma 2.1 (Gu, 1994): For the symmetric matrices R > 0, X and matrix Y
the following statements are equivalent:
(1) X − YTRY < 0,
(2) There exists an appropriate dimensional matrix Z such that

[

X + YTZ + ZTY ZT

∗ −R

]

< 0.

Lemma 2.2 (Petersen, 1987): Given matrices J , E and Θ = ΘT , inequality
Θ+EF (t)G+GTFT (t)ET < 0 holds for any F (t) satisfying FT (t)F (t) ≤ I, if
there exists a scalar γ > 0 such that Θ+ γ−1EET + γGTG < 0.

3. Main results

Theorem 3.1 For three given scalars h > 0, τ > 0, and r > 0, if there
exist some positive definite symmetric matrices: P11, P22, P33, P44, Qi (i =
1, 2, ......, 10) ∈ Rn×n and some appropriately dimensional matrices: (Pij)1≤i<j≤4,

K = [KT
1 ,K

T
2 ]

T , L = [LT
1 , L

T
2 ]

T , M = [MT
1 ,MT

2 ]T , N = [NT
1 , NT

2 ]T , such that
the following linear matrix inequalities (LMIS) hold:

P =















P11 P12 P13 P14

∗ P22 P23 P24

∗ ∗ P33 P34

∗ ∗ ∗ P44















≥ 0, (5)

and

Ξ1 =















Ω1 (A1
c)

TQ2 h(Ac)
TQ6 h(Ac)

TQ9

∗ −l1Q2 0 0

∗ ∗ −hQ6 0

∗ ∗ ∗ −2Q9















< 0, (6)
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Ξ2 =















Ω2 (A2
c)

TQ2 τ(Ac)
TQ7 τ(Ac)

TQ10

∗ −l2Q2 0 0

∗ ∗ −τQ7 0

∗ ∗ ∗ −2Q10















< 0, (7)

where

Ωk = (Ωk
ij)9×9,

Ωk
11 = lk[−P11A−ATPT

11 + PT
13 + P13 + PT

14 + P14

−Q1 +Q3 + hQ4 + τQ5 +KT
1 +K1 + hLT

1

+hL1 +M1 +MT
1 + τNT

1 + τN1],

Ωk
12 = lk[−ATP12 + PT

23 − P13 + PT
24 −KT

1 +K2 + hL2],

Ωk
13 = lk[P12 + P11C],

Ωk
14 = lk[−P14 −MT

1 +M2 + τN2],

Ωk
15 = lkP11W0,

Ωk
16 = lkP11W1,

Ωk
17 = lkP11W0.2,

Ω1
18 = h[−ATP13 + P33 + PT

34 − LT
1 ],

Ω2
18 = τ [−ATP14 + P34 + PT

44 −NT
1 ],

Ω1
19 = −hkT1 −

h2

2
LT
1 ,

Ω2
19 = −τMT

1 −
τ2

2
NT

1 ,

Ωk
22 = lk[−PT

23 − P23 −KT
2 −K1 −Q1],

Ωk
23 = lk[P22 + PT

12C],

Ωk
24 = lk[−P24],

Ωk
25 = lk[P

T
12W0],

Ωk
26 = lk[P

T
12W1],

Ωk
27 = lk[P

T
12W2],

Ω1
28 = h[−P33 − LT

2 ],

Ω2
28 = τP34,

Ω1
29 = −hkT2 −

h2

2
LT
2 ,

Ω2
29 = 0,
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Ωk
33 = −lkQ2,

Ωk
34 = 0,

Ωk
35 = 0,

Ωk
36 = 0,

Ωk
37 = 0,

Ω1
38 = h[CTP13 + P23],

Ω2
38 = τ [CTP14 + P24],

Ωk
39 = 0, Ωk

44 = lk[−Q3 −MT
2 −M2], Ω

k
45 = 0,

Ωk
46 = 0,

Ωk
47 = 0,

Ω1
48 = h[−P34],

Ω2
48 = τ [−PT

44 −NT
2 ],

Ω1
49 = 0,

Ω2
49 = −τMT

2 −
τ2

2
NT

2 ,

Ωk
55 = lk[r

2Q8 + S],

Ωk
56 = 0,

Ωk
57 = 0,

Ω1
58 = h[WT

0 P13],

Ω2
58 = τ [WT

0 P14],

Ωk
59 = 0,

Ωk
66 = lk[−S],

Ωk
67 = 0,

Ω1
68 = h[WT

1 P13],

Ω2
68 = τ [WT

1 P14],

Ωk
69 = 0,Ωk

77 = lk[−Q8],

Ω1
78 = h[WT

2 P13],

Ω2
78 = τ [WT

2 P14],

Ωk
79 = 0,

Ω1
88 = lk[−hQ4],

Ω2
88 = lk[−τQ5],

Ωk
89 = 0,
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Ω1
99 = lk[−hQ6 −

h2

2
Q9],

Ω2
99 = lk[−τQ7 −

τ2

2
Q10],

Ak
C =

[

−lkA 0 lkC 0 lkW0 lkW1 lkW2 0 0
]

,

k = 1, 2, ..............,

AC =
[

−A 0 C 0 W0 W1 W2 0 0
]

.

with l1 = h
h+τ

, l2 = τ
h+τ

and * meaning the symmetric terms,
then the nominal system (4) is asymptotically stable.

Proof: Define a Lyapunov-Krasovskii functional candidate for system (4) as

V (t, x) = V1(t, x) + V2(t, x) + V3(t, x), (8)

where

V1(t, x) = ξT (t)Pξ(t),

V2(t, x) =

∫ t

t−h

xT (s)Q1x(s)ds+

∫ t

t−h

ẋT (s)Q2ẋ(s)ds

+

∫ t

t−τ

xT (s)Q3x(s)ds +

∫ t

t−τ

fT (x(s))Sf(x(s))ds,

V3(t, x) =

∫ 0

−h

∫ t

t+θ

xT (s)Q4x(s)dsdθ +

∫ 0

−τ

∫ t

t+θ

xT (s)Q5x(s)dsdθ

+

∫ 0

−h

∫ t

t+θ

ẋT (s)Q6ẋ(s)dsdθ +

∫ 0

−τ

∫ t

t+θ

ẋ(s)Q7ẋ(s)dsdθ

+ r

∫ 0

−r

∫ t

t+θ

fT (x(s))Q8f(x(s))dsdθ

+

∫ 0

−h

∫ 0

θ

∫ t

t+λ

ẋT (s)Q9ẋ(s)dsdλdθ

+

∫ 0

−τ

∫ 0

θ

∫ t

t+λ

ẋT (s)Q10ẋ(s)dsdλdθ,

with

ξ(t) =
[

xT (t) xT (t− h)
∫ t

t−h
xT (s)ds

∫ t

t−τ
xT (s)ds

]

.
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Then, the time derivative of V (t, x) with respect to t along the system (4) is

V̇ (t, x) = V̇1(t, x) + V̇2(t, x) + V̇3(t, x), (9)

where

V̇1(t, x) =

2[xT (t)P11 + xT (t− h)PT
12 +

∫ t

t−h

xT (s)dsPT
13 +

∫ t

t−τ

xT (s)dsPT
14]

[−Ax(t) +W0f(x(t)) +W1f(x(t− τ)) + Cẋ(t− h) +W2

∫ t

t−r

f(x(s))ds]

+2[xT (t)P12 + xT (t− h)P22 +

∫ t

t−h

xT (s)dsPT
23 +

∫ t

t−τ

xT (s)dsPT
24]ẋ(t− h)

+2[xT (t)P13 + xT (t− h)P23 +

∫ t

t−h

xT (s)dsP33

+

∫ t

tτ

xT (s)dsPT
34][x(t) − x(t− h)]

+2[xT (t)P14 + xT (t− h)P24 +

∫ t

t−h

xT (s)dsP34

+

∫ t

t−τ

xT (s)dsP44][x(t) − x(t− τ)], (10)

V̇2(t, x) = xT (t)[Q1 +Q3]x(t) + xT (t− h)[−Q1]x(t− h) + ẋT (t)[Q2]ẋ(t)

+ ẋT (t− h)[−Q2]ẋ(t− h) + xT (t− τ)[−Q3]x(t− τ)

+ fT (x(t− τ))[−S]f(x(t − τ)) + fT (x(t))[S]f(x(t)), (11)

V̇3(t, x) = xT (t)[hQ4 + τQ5]x(t) + fT (x(t))[r2Q8]f(x(s))

+ẋT (t)[hQ6 + τQ7 +
h2

2
Q9 +

τ2

2
Q10]ẋ(t)

−

∫ t

t−h

ẋT (s)[Q4]x(s)ds −

∫ t

t−τ

xT (s)[Q5]x(s)ds −

∫ t

t−h

ẋT (s)[Q6]ẋ(s)ds

−

∫ t

t−τ

ẋT (s)[Q7]ẋ(s)ds− r

∫ t

t−r

fT (x(s))[Q8]f(x(s))ds

−

∫ 0

−h

∫ t

t+θ

ẋT (s)[Q9]ẋ(s)dsdθ −

∫ 0

−τ

∫ t

t+θ

ẋT (s)[Q10]ẋ(s)dsdθ. (12)
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By using Jensen‘s inequality

[

∫ r

0

w(s)ds]TM [

∫ r

0

w(s)ds] ≤ r

∫ r

0

wT (s)Mw(s)ds

we obtain,

V̇3(t, x) = xT (t)[hQ4 + τQ5]x(t) + fT (x(t))[r2Q8]f(x(t))

+ẋT (t)[hQ6 + τQ7 +
h2

2
Q9 +

τ2

2
Q10]ẋ(t)

−[

∫ t

t−h

x(s)ds]T [Q4]x(s)− [

∫ t

t−τ

x(s)ds]T [Q5]x(s) − [

∫ t

t−h

ẋ(s)ds]T [Q6]ẋ(s)

−[

∫ t

t−τ

ẋ(s)ds]T [Q7]ẋ(s)− [

∫ t

t−r

f(x(s))ds]T [Q8][

∫ t

t−r

f(x(s))ds]

−[

∫ 0

−h

∫ t

t+θ

ẋ(s)dsdθ]T [Q9]ẋ(s)− [

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ]T [Q10]ẋ(s). (13)

Now, from the Leibinz-Newton formula the following equations are true for real
matrices K,L,M,N with appropriate dimensions,

α1(t) := 2ξT1 (t)K
T [x(t)− x(t− h)−

∫ t

t−h

ẋ(s)ds] = 0, (14)

α2(t) := 2ξT1 (t)L
T [hx(t)−

∫ t

t−h

x(s)ds−

∫ 0

−h

ẋ(s)dsdθ] = 0, (15)

α3(t) := 2ξT2 (t)M
T [x(t)− x(t− τ) −

∫ t

t−τ

ẋ(s)] = 0, (16)

α4(t) := 2ξT2 (t)N
T [τx(t) −

∫ t

t−τ

x(s)ds −

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ] = 0, (17)

where

ξ1(t) =
[

xT (t) xT (t− h)
]T

, ξ2(t) =
[

xT (t) xT (t− τ)
]T

.
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Suppose that

4
∑

i=1

αi(t) = xT (t)
[

KT
1 +K1 + hLT

1 + hL1 +MT
1 +M1 + τNT

1 + τN1

]

x(t)

+2xT (t)
[

−KT
1 +K2 + hL2

]

x(t− h) + 2xT (t)
[

−MT
1 +M2 − τN2

]

x(t− τ)

+xT (t− h)
[

−KT
2 −K2

]

x(t− h) + xT (t− τ)
[

−MT
2 −M2

]

x(t − τ)

+xT (t)
[

− hLT
1

]

x(s) + 2xT (t)
[

− τNT
1

]

x(s) + 2xT (t)
[

− hKT
1 −

h2

2
LT
1

]

ẋ(s)

+xT (t)
[

− τMT
1 −

τ2

2
NT

1

]

ẋ(s)

+2xT (t− h)
[

− hLT
1

]

x(s) + 2xT (t− τ)
[

− τNT
2

]

ẋ(s)

+2xT (t− h)
[

− hKT
2 −

h2

2
LT
2

]

ẋ(s) + 2xT (t− τ)
[

− τMT
2 −

τ2

2
NT

2

]

ẋ(s).

(18)

By combining relations from (10) to (18), we obtain

V̇ (t, x) = V̇1(t, x) + V̇2(t, x) + V̇3(t, x) +
4

∑

i=1

αi(t),

V̇ (t, x) ≤ xT (t)
[

− PT
11A− P11A

T + PT
13 + P13 + P14 +Q1 +Q3 + hQ4 + τQ5

+KT
1 +K1

+hLT
1 + hL1 +MT

1 +M1 + τNT
1 + τN1

]

x(t)

+2xT (t)
[

−ATP12 + PT
23 − P13 + PT

24 −KT
1 +K2 + hL2

]

x(t− h)

+2xT (t)
[

P12 + P11C
]

ẋ(t− h) + 2xT (t)
[

− P14 −MT
1 +M2 + τN2

]

x(t− τ)

+2xT (t)
[

P11W0

]

f(x(t)) + 2xT (t)
[

P11W1

]

f(x(t− τ))

+2xT (t)
[

P11W2

]

∫ t

t−r

f(x(s))ds + 2xT (t)h
[

−ATP13 + P33 + PT
34 − LT

1

]

x(s)

[0.2cm]+ 2xT (t)τ
[

−ATP14 + P34 + PT
44 −NT

1

]

x(s)

+2xT
[

− hKT
1 −

h2

2
LT
1

]

ẋ(s) + 2xT (t)
[

− τMT
1 −

τ2

2
NT

1

]

ẋ(s)
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+2xT (t− h)
[

− PT
23 − P23 −KT

2 −K1 −Q1

]

x(t− h)

+2xT (t− h)
[

P22 + PT
12C

]

ẋ(t− h) + 2xT (t− h)
[

P24

]

x(t − τ)

+2xT (t− h)
[

PT
12W0

]

f(x(t)) + 2xT (t− h)
[

PT
12W1

]

f(x(t− τ))

+2xT (t− h)
[

PT
12W2

]

∫ t

t−r

f(x(s))ds

+2xT (t− h)h
[

− P33 − LT
1

]

x(s) + 2xT (t− h)
[

τP34]x(s)

+2xT (t− h)
[

− hKT
2 −

h2

2
LT
2

]

ẋ(s) + 2ẋT (t− h)
[

−Q2

]

ẋ(t− h)

+2ẋT (t− h)h
[

CTP13 + P23

]

x(s) + 2ẋT (t− h)τ
[

CTP14 + P24

]

x(s)

+xT (t− τ)
[

−Q3 −MT
2 −M2]x(t − τ)

+2xT (t− τ)h
[

− PT
34

]

x(s) + 2xT (t− τ)τ
[

− PT
44 −NT

2

]

x(s)

+2xT (t− τ)
[

− τMT
2 − τ22NT

2

]

ẋ(s)

+fT (x(t))
[

r2Q8 + S
]

f(x(t))

+2fT (x(t))h
[

WT
0 P13

]

x(s) + 2fT (x(t))τ
[

WT
0 P14

]

x(s)

+2fT (x(t− τ))
[

− S
]

f(x(t− τ)) + 2fT (x(t − τ))h
[

WT
1 P13

]

x(s)+ 2fT (x(t− τ))τ
[

WT
1 P14

]

x(s)

+2

∫ t

t−r

fT (x(s))ds
[

−Q8

]

∫ t

t−r

f(x(s))ds +

∫ t

t−r

fT (x(s))h
[

WT
2 P13

]

x(s)

+2

∫ t

t−r

fT (x(s))dsτ
[

WT
2 P14

]

x(s)

+xT (s)
[

− hQ4

]

x(s) + xT (s)
[

− τQ5

]

x(s)

+ẋT (s)
[

− hQ6 −
h2

2
Q9

]

ẋ(s) + ẋT (s)
[

− τQ7 −
τ2

2
Q10]ẋ(s)

+ẋT (t)
[

hQ6 + τQ7 +
h2

2
Q9 +

τ2

2
Q10 +Q2

]

ẋ(t). (19)

Then,

V̇ (t, x) ≤ ηT (t, s, u, θ) Ξ1 η(t, s, u, θ) + ηT (t, s, u, θ) Ξ2 η(t, s, u, θ). (20)

Now, using the fact that

1 =
2

h3

∫ 0

−h

∫ t

t+θ

∫ t

t−h

dsdudθ =
2

τ3

∫ 0

−τ

∫ t

t+θ

∫ t

t−τ

dsdudθ,
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we have

V̇ (t, x) =
2

h3

∫ 0

−h

∫ t

t+θ

∫ t

t−h

ηT (t, s, u, θ) Ξ1 η(t, s, u, θ)dsdudθ

+
2

τ3

∫ 0

−τ

∫ t

t+θ

∫ t

t−τ

ηT (t, s, u, θ) Ξ2 η(t, s, u, θ)dsdudθ < 0,

V̇ (t, x) ≤ 0, (21)

where

η =

[

xT (t)xT (t− h)ẋT (t− h)xT (t− τ)fT (x(t))f1

∫ t

t−r

f(x(s))dsxT (s)ẋT (s)

]T

,

with f1 = fT (x(t − τ)). And thus, according to Lyapunov stability theory, the
nominal system (4) is asymptotically stable. �

Theorem 3.2 For the given scalars h > 0, τ > 0 and r > 0, if there exist some
positive definite symmetric matrices : P11, P22, P33, P44, Qi (i = 1, 2, 3..., 10) ∈
Rn×n, some appropriate matrices: (Pij)1≤i<j≤4, K = [KT

1 ,K
T
2 ]

T , L = [LT
1 , L

T
2 ]

T ,
M = [MT

1 ,MT
2 ]T , N = [NT

1 , NT
2 ]T , and two positive scalars: ε1 > 0, ε2 > 0

such that the following linear matrix inequalities (LMIS) hold:





















Ω1 (A1
c)

TQ2 h(Ac)
TQ6 h(Ac)

TQ9 Ξ1
15

∗ −l1Q2 0 0 l1Q2M

∗ ∗ −hQ6 0 hQ6M

∗ ∗ ∗ −2Q9 hQ9M

∗ ∗ ∗ ∗ εI





















< 0, (22)

and





















Ω2 (A2
c)

TQ2 τ(Ac)
TQ7 τ(Ac)

TQ10 Ξ2
15

∗ −l2Q2 0 0 l2Q2M

∗ ∗ −τQ7 0 τQ7M

∗ ∗ ∗ −2Q10 τQ10M

∗ ∗ ∗ ∗ −εI





















< 0, (23)
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where

Ωk = (Ωk
ij)9×9,

Ω1
11 = l1[−P11A−ATPT

11 + PT
13 + P13 + PT

14 + P14 −Q1 +Q3 + hQ4 + τQ5

+KT
1 +K1 + hLT

1 + hL1 +M1 +MT
1 + τNT

1 + τN1] + ε1E
T
−AE−A,

Ω1
12 = l1[−ATP12 + PT

23 − P13 + PT
24 −KT

1 +K2 + hL2] + εkECE
T
−A,

Ω1
13 = l1[P12 + P11C] + ε1E

T
−AEC ,

Ω1
14 = l1[−P14 −MT

1 +M2 + τN2],

Ω1
15 = l1P11W0 + ε1E

T
−AEW0

,

Ω1
16 = l1P11W1 + ε1E

T
−AEW1

,

Ω1
17 = l1P11W2 + ε1E

T
−AEW2

,

Ω1
18 = h[−ATP13 + P33 + PT

34 − LT
1 ] + ε1EW0

ET
−A,

Ω1
19 = −hKT

1 −
h2

2
LT
1 ,

Ω1
22 = l1[−PT

23 − P23 −KT
2 −K1 −Q1],

Ω1
23 = l1[P22 + PT

12C] + ε1E
T
CEC ,

Ω1
24 = l1[−P24],

Ω1
25 = l1[P

T
12W0] + ε1E

T
CEW0

,

Ω1
26 = l1[P

T
12W1] + ε1E

T
CEW1

,

Ω1
27 = l1[P

T
12W2] + ε1E

T
CEW2

,

Ω1
28 = h[−P33 − LT

2 ],

Ω1
29 = −hKT

2 −
h2

2
LT
2 ,

Ω1
33 = −L1Q2,

Ω1
34 = 0,

Ω1
35 = 0,

Ω1
36 = 0,

Ω1
37 = 0,

Ω1
38 = h[CTP13 + P23] + ε1E

T
CEW0

,

Ω1
39 = 0,

Ω1
44 = l1[−Q3 −MT

2 −M2],

Ω1
45 = 0,

Ω1
46 = 0,

Ω1
47 = 0,
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Ω1
48 = h[−P34],

Ω1
49 = 0,

Ω1
55 = l1[r

2Q8 + S],

Ω1
56 = 0,

Ω1
57 = 0,

Ω1
58 = h[WT

0 P13] + ε1E
T
W0

EW0
,

Ω1
59 = 0,

Ω1
66 = l1[−S],

Ω1
67 = 0,

Ω1
68 = h[WT

1 P13] + ε1E
T
W1

EW0
,

Ω1
69 = 0,

Ω1
77 = l1[−Q8],

Ω1
78 = h[WT

2 P13] + ε1E
T
W2

EW0
,

Ω1
79 = 0,

Ω1
88 = l1[−hQ4],

Ω1
89 = 0,

Ω1
99 = l1[−hQ6 −

h2

2
Q9],

Ω2
11 = l2[−P11A−ATPT

11 + PT
13 + P13 + PT

14 + P14 −Q1 +Q3 + hQ4 + τQ5

+KT
1 +K1 + hLT

1 + hL1 +M1 +MT
1 + τNT

1 + τN1] + ε2E
T
−AE−A,

Ω2
12 = l2[−ATP12 + PT

23 − P13 + PT
24 −KT

1 +K2 + hL2] + ε2ECE
T
−A,

Ω2
13 = l2[P12 + P11C] + ε2E

T
−AEC ,

Ω2
14 = l2[−P14 −MT

1 +M2 + τN2],

Ω2
15 = l2P11W0 + ε2E

T
−AEW0

,

Ω2
16 = l2P11W1 + ε2E

T
−AEW1

,

Ω2
17 = l2P11W2 + ε2E

T
−AEW2

,

Ω2
18 = τ [−ATP14 + P34 + PT

44 −NT
1 ] + ε2EW1

ET
−A,

Ω2
19 = −τMT

1 −
τ2

2
NT

1 ,

Ω2
22 = l2[−PT

23 − P23 −KT
2 −K1 −Q1],

Ω2
23 = l2[P22 + PT

12C] + ε2E
T
CEC ,

Ω2
24 = l2[−P24],
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Ω2
25 = l2[P

T
12W0] + ε2E

T
CEW0

,

Ω2
26 = l2[P

T
12W1] + ε2E

T
CEW1

,

Ω2
27 = l2[P

T
12W2] + ε2E

T
CEW2

,

Ω2
28 = τ [P34],

Ω2
29 = 0,

Ω2
33 = −l2Q2,

Ω2
34 = 0,

Ω2
35 = 0,

Ω2
36 = 0,

Ω2
37 = 0,

Ω2
38 = τ [CTP14 + P24] + ε2E

T
CEW0

,

Ω2
39 = 0,

Ω2
44 = l2[−Q3 −MT

2 −M2],

Ω2
45 = 0,

Ω2
46 = 0,

Ω2
47 = 0,

Ω2
48 = τ [−PT

34 −NT
2 ],Ω2

49 = −τMT
2 −

τ2

2
NT

2 ,

Ω2
55 = l2[r

2Q8 + S],

Ω2
56 = 0,

Ω2
57 = 0,

Ω2
58 = τ [WT

0 P14] + ε2E
T
W0

EW2
,

Ω2
59 = 0,

Ω2
66 = l2[−S],

Ω2
67 = 0,

Ω2
68 = τ [WT

1 P14] + ε2E
T
W1

EW2
,

Ω2
69 = 0,

Ω2
77 = l2[−Q8],

Ω2
78 = τ [WT

2 P14] + ε2E
T
W2

EW2
,

Ω2
79 = 0,

Ω2
88 = l2[−τQ5],

Ω2
89 = 0,

Ω2
99 = l2[−τQ7 −

τ2

2
Q10],
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Ξ1=
[

l1M
TP11 l1M

TP12 0 0 0 0 0 hMTP13 0
]T

,

Ξ2=
[

l2M
TP11 l2M

TP12 0 0 0 0 0 τMTP14 0
]T

,

k = 1, 2....., l1 = h
h+τ

, l2 = τ
h+τ

, and other items of Ωk, Ak
C (k = 1, 2, ...., ), AC

are given as in Theorem 3.1, then the uncertain system (1) is robustly asymp-
totically stable.

Proof: If−A,W0,W1, C andW2 in (5) to (7) are replaced with−A+MF (t)E−A,
W0 +MF (t)EW0

, W1 +MF (t)EW1
, C +MF (t)EC and W2 +MF (t)EW2

, re-
spectively, then (6),(7) for the uncertain neutral-type neural networks (1) are
equivalent to the following conditions:

Ξ1 + Γ1dF (t)ΓT
e + ΓeF

T (t)ΓT
1d < 0, (24)

Ξ2 + Γ2dF (t)ΓT
e + ΓeF

T (t)ΓT
2d < 0. (25)

with

Γ1d =









l1M
TP11 l1M

TP12 0 0 0 hMTP13 0 0 0

l1M
TQ2 hMTQ6 hMTQ9









T

,

Γ2d =









l2M
TP11 l2M

TP12 0 0 0 τMTP14 0 0 0

l2M
TQ2 τMTQ7 τMTQ10









T

,

Γe =
[

ET
−A 0 ET

C ET
W0

ET
W1

ET
W2

0 0 0 0 0 0
]

.

Now, let D, E and F (t) be real matrices of appropriate dimensions and F (t)
satisfying FT (t)F (t) ≤ I. Then, the following inequality hods for any constant
ε > 0,

DF (t)E + ETFT (t)DT ≤ DDT + ε−1ETE,

the necessary and sufficient condition for (24) and (25) being that there exist
two positive scalars ε1 > 0, ε2 > 0 such that

Ξ1 + ε1Γ1dΓ
T
1d + ε−1

1 ΓT
e Γe < 0, (26)

Ξ2 + ε2Γ2dΓ
T
2d + ε−1

2 ΓT
e Γe < 0. (27)

By applying the complement we can obtain that (26) and (27) are equivalent
to (22) and (23), respectively, and the proof is completed. �

Similarly, based on the theorem above we can obtain the robust asymptotical
stability for system (1).
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4. Numerical example

To illustrate the usefulness of the proposed approach, we present the following
example.

Consider the following uncertain neutral-type neural networks (1) with the
parameters given below:

ẋ(t) = −Ax(t)+W0f(x(t))+W1f(x(t−τ))+Cẋ(t−h)+W2

∫ t

t−r

f(x(s))ds,

A =

[

−0.05 0
0 −1.8

]

, W0 =

[

−0.02 0

−0.05 1

]

, W1 =

[

4 0.1

0.2 −0.03

]

,

C =

[

−1 1

0.2 0.1

]

, W2 =

[

−6.5 1

0.2 0.1

]

, D =

[

0.2 0

0 0.2

]

,

E1 =

[

0.5 0

0 0.5

]

, E3 =

[

0.5 0

0 0.5

]

, E4 =

[

0.5 0

0 0.5

]

,

E5 =

[

0.5 0

0 0.5

]

, E6 =

[

0.5 0

0 0.5

]

,

with ε = 0.35, l1 = 3, l2 = 2, h = 0.01, τ = 0.02, r = 0.01. Then, upon apply-
ing Theorem (3.1) in MATLAB LMI Toolbox the feasible solutions obtained are

P11 = 10−6

[

0.0466 −0.1564

−0.1564 1.0949

]

, P12 = 10−6

[

0.0333 −0.0595

−0.0595 0.0542

]

,

P13 = 10−6

[

0.1476 −0.0014

−0.0014 0.1363

]

, P14 = 10−6

[

0.1562 −0.0500

−0.0500 1.8133

]

,

P22 = 10−6

[

0.2785 −0.3741

−0.3741 0.3.2018

]

, P23 =

[

−0.1477 −0.0004

−0.0004 −0.1440

]

P24 = 10−6

[

5.4204 −0.1904

−0.1904 5.7305

]

, P33 = 10−6

[

0.3873 −0.1851

−0.1851 3.8283

]

P34 = 10−6

[

0.7163 −0.7828

−0.7828 9.9407

]

, P44 = 10−6

[

4.1666 0

0 4.1666

]
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Q1 = 10−6

[

6.3798 −0.0489

−0.0489 5.7799

]

, Q2 =

[

0.0030 −0.0023

−0.0023 0.0074

]

,

Q3 = 10−6

[

1.4845 0.0155

0.0155 1.5291

]

, Q4 =

[

0.0138 0.0022

0.0022 0.0090

]

,

Q5 = 10−6

[

4.0398 0.0070

0.0070 4.0488

]

, Q6 =

[

0.0040 −0.0433

−0.0433 0.4208

]

Q7 =

[

0.1262 −0.9209

−0.9209 7.0205

]

, Q8 =

[

5.2884 0.0101

0.0101 6.8036

]

Q9 =

[

0.0311 −0.3239

−0.3239 2.8042

]

, Q10 =

[

0.2529 −1.6616

−1.6616 12.5428

]

S =

[

−0.0010 −0.0007

−0.0007 0.0001

]

.

Therefore the uncertain neutral-type neural networks is asymptotically sta-
ble.

5. Conclusion

In this paper, by constructing an appropriate Lyapunov-Krasovskii functional,
and employing free-weighting matrices technique, some sufficient conditions en-
suring the robust stability for uncertain neutral-type neural networks with dis-
crete and distributed delays are derived. Numerical example is provided to
illustrate the effectiveness of our results. In most of the papers on stability
of neutral type neural networks Lyapunov functional is considered with dou-
ble integral only. In this paper we considered the Lyapunov functional with
triple integrals. Future investigations shall include delimiting the domain of
attraction and the upper bound of perturbations. Since external disturbances
inevitably appear in any real system, it is also interesting to explore stochastic
disturbances.
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systems. Birkhäuser, Boston.

Guo, W., Austin, F. and Chen, S. (2010) Global synchronization of non-
linearly coupled complex networks with non-delayed coupling. Commun.
Nonlinear Sci. Numer. Simul., 15, 1631–1639.

He, Y., Liu, G., Rees, D. and Wu, M. (2007) Stability analysis for neural
networks with time-varying interval delay. IEEE Trans. Neural Netw.,
18, 1850-1854.

Kwon, O.M., Lee, S.M., Park, J.H. and Cha, E.J. (2012) New ap-
proaches on stability criteria for neural networks with interval time-varying
delays. Appl. Math. Comput. 213, 9953-9964.

Lee, S.M., Kwon, O.M. and Park, Ju H. (2010) A novel delay-dependent
criterion for delayed neural networks of neutral type. Phys. Lett. A 374,
1843-1848.

Li, Y., Zhong, S., Cheng, J., Shi, K. and Ren, J. (2016) New passivity
criteria for uncertain neural networks with time-varying delay. Neurocom-
puting 171, 1003–1012.

Liu, D. (1997) Cloning template design of cellular neural networks for asso-
ciative memories. IEEE Trans. Circuit. Syst. 44, 646-650.

Liu, P. (2009) Robust exponential stability for uncertain time-varying delay
systems with delay dependence. J. Franklin Inst. 346, 958–968.

Nagamani, G. and Balasubramaniam, P. (2012) Delay-dependent passiv-
ity criteria for uncertain switched neural networks of neutral type with
interval time-varying delay. Physica Scripta 85 (4), 045010.

Park, P., Ko, J. W. and Jeong, C. (2011) Reciprocally convex approach
to stability of systems with time-varying delays. Automatica 47, 235-238.

Petersen, I.R. (1987) A stabilization algorithm for a class of uncertain linear
systems. Systems and Control Letters 8, 351-357.



96 P. Baskar, S. Padmanabhan and M. Syed Ali

Ren, Y., Feng, Z. and Sun, G. (2016) Improved stability conditions for
uncertain neutral-type systems with time-varying delays. Int. J. Syst.
Sci. 47, 1982-1993.

Saravanakumar, R., Syed Ali, M., Cao, J. and Huang, H. (2016) H∞
state estimation of generalised neural networks with interval time-varying
delays. International Journal of Systems Science 47 (16), 3888–3899.

Shi, K., Zhu, H., Zhong, S., Zeng, Y. and Zhang, Y. (2015) New stability
analysis for neutral type neural networks with discrete and distributed
delays using a multiple integral approach. J. Franklin Inst. 352, 155-176.

Song, Q. K. (2008) Exponential stability of recurrent neural networks with
both time-varying delays and general activation functions via LMI ap-
proach. Neurocomputing, 71, 2823-2830.

Sun, J., Liu, G.P., Chen, J. and Rees, D. (2009) Improved stability criteria
for neural networks with time-varying delay. Phys. Lett. A, 373, 342-348.

Syed Ali, M. (2011 ) Global asymptotic stability of stochastic fuzzy recurrent
neural networks with mixed time-varying delays. Chin Phys B 20 (8),
080201.

Syed Ali, M. (2014) Stability analysis of Markovian jumping stochastic Cohen–
Grossberg neural networks with discrete and distributed time varying de-
lays. Chinese Physics B 23 (6), 060702.

Syed Ali, M., Saravanakumar, R. and Zhu, Q. (2015) Less conserva-
tive delay-dependent control of uncertain neural networks with discrete
interval and distributed time-varying delays. Neurocomputing 66, 84–95.

Syed Ali, M., Arik, S. and Saravanakmuar, R. (2015) Delay-dependent
stability criteria of uncertain Markovian jump neural networks with dis-
crete interval and distributed time-varying delays. Neurocomputing 158,
167–173.

Syed Ali, M. and Saravanan, S. (2016) Robust finite-time H∞ control
for a class of uncertain switched neural networks of neutral-type with
distributed time varying delays. Neurocomputing, 177, 454-468.

Syed Ali, M., Saravanakumar, R., Ahn, C. K. and Karimi, H. R.

(2017) Stochastic H∞ filtering for neural networks with leakage delay and
mixed time-varying delays. Information Sciences 388, 118–134.

Syed Ali, M., Gunasekaran, N., Ahn, C.K. and Shi, P. (2018) Sampled-
data stabilization for fuzzy genetic regulatory networks with leakage de-
lays. IEEE/ACM Transactions on computational biology and bioinformat-
ics, 15, 271-285.

Tian, J. and Zhong, S.M. (2011) Improved delay-dependent stability crite-
rion for neural networks with time-varying delay. Appl. Math. Comput.
217, 10278-10288.

Tian, J. K., Xiong, W. J. and Xu, F. (2014) Improved delay-partitioning
method to stability analysis for neural networks with discrete and dis-
tributed time-varying delays. Appl. Math. Comput. 233, 152–164.

Thuan, M.V., Trinh, H. and Hien, L.V. (2016) New inequality-based ap-
proach to passivity analysis of neural networks with interval time-varying



Stability for uncertain neutral NNs with discrete and distributed delays 97

delay. Neurocomputing 194, 301–307.
Wang, Y., Yang, C. and Zuo, Z. (2012) On exponential stability analy-

sis for neural networks with time-varying delays and general activation
functions. Commun. Nonlinear Sci. Numer. Simul. 17, 1447-1459.

Zhang, Y., Yue, D. and Tian, E. (2009) New stability criteria of neural
networks with interval time-varying delays: a piecewise delay method.
Appl. Math. Comput. 208 249-259.


