PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical problems of dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Praktyczne problemy kryteriów podobieństwa dynamicznego w zagadnieniach interakcji płyn–ciało stałe przy różnych ich ruchach względnych
Języki publikacji
EN
Abstrakty
EN
The work concerns dynamic similarity criteria of various phenomena occurring in hydraulics and fluid dynamics originally derived from ratios of forces and forces moments affecting these phenomena. The base of dynamic similarity criteria formulations and considerations is A. Flaga’s method and procedure for determining dynamic similarity criteria in different issues of fluid–solid interactions i.e. at different fluid–solid relative motions. The paper concerns the determination and analysis of dynamic similarity criteria for various practical problems encountered mainly in hydraulics and fluid dynamics at steady, smooth fluid onflow in front of a solid. Moreover, the cases of mechanically induced vibrations of a body in a stationary fluid moving with constant velocity in front of the body have been presented. Assuming authorial method and procedure for determining dynamic similarity criteria, its have been presented and analysed in the paper both well known similarity numbers obtained in another way (e.g. from dimensional analysis or differential equations for particular problems – as Reynolds, Froude, Euler, Cauchy, Strouhal, Mach numbers) – as well as several new similarity numbers encountered in different fluid solid interaction problems (e.g. new forces and moments coefficients encountered in problems of vibrating solid bodies in fluids).
PL
Praca dotyczy kryteriów podobieństwa dynamicznego różnych zjawisk zachodzących w hydraulice i dynamice płynów, oryginalnie wyprowadzonych ze stosunków sił i momentów sił wpływających na te zjawiska. Podstawą formułowania i rozważań dotyczących kryteriów podobieństwa dynamicznego jest metoda i procedura Andrzeja Flagi dotycząca wyznaczania kryteriów podobieństwa dynamicznego w różnych zagadnieniach interakcji płyn-ciało stałe, tj. przy różnych względnych ruchach płynu i ciała stałego. Praca dotyczy wyznaczania i analizy kryteriów podobieństwa i analizy różnych praktycznych problemów spotykanych głównie w hydraulice i mechanice płynów przy ustalonym bezturbulencyjnym napływie płynu przed ciałem stałym. Ponadto przedstawiono przypadki drgań ciała stałego wymuszonych mechanicznie przy stacjonarnym ruchu płynu ze stał ą prędkością przed ciałem stałym. Przyjmując autorską metodę i procedur ę wyznaczania kryteriów podobieństwa dynamicznego, w pracy przedstawiono i analizowano zarówno znane liczby kryterialne otrzymane na innej drodze (np. z analizy wymiarowej czy równań różniczkowych danego zagadnienia – jak liczby: Reynoldsa, Froude’a, Eulera, Cauchy’ego, Strouhala, Macha) – ale także wiele nowych liczb kryterialnych występujących w różnych zagadnieniach interakcji płyn – ciało stałe (np. nowe współczynniki sił i momentów aerodynamicznych występujących w zagadnieniach drgań ciał stałych w płynach).
Twórcy
  • Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow, Poland
Bibliografia
  • [1] A. Flaga, R. Kłaput, and Ł. Flaga, “Dynamic similarity criteria in fluid–solid interaction at different fluid–solid relative motions: part I – fundamentals”, Archives of Civil and Mechanical Engineering, vol. 23, art. no. 28, 2023, doi: 10.1007/s43452-022-00547-w.
  • [2] R.D. Blevins, Flow-induced vibration, 2nd ed. New York: Van Nostrand Reinhold, 1990.
  • [3] R.L. Daugherty and J.B. Franzini, Fluid mechanics with engineering applications. New York: McGraw-Hill Book Company, 1977.
  • [4] J. Ziereb, Similarity criteria and modelling. New York: Marcel Dekker, 1971.
  • [5] L.I. Siedow, Similarity and dimensional analysis in mechanics. New York: Academic Press, 1953.
  • [6] N.J. Cook, The designer’s guide to wind loading of building structures. Part I. Background, damage, survey, wind data and structural classification. London: Building Research Establishment, Butterworths, 1985.
  • [7] A. Flaga, Wind vortex-induced excitation and vibration of slender structures – single structure of circular cross-section normal to flow. Cracow University of Technology, 1996.
  • [8] A. Kocon and A. Flaga, “Critical velocity measurements of freight railway vehicles roll-over in wind tunnel tests as the method to assess their safety at strong cross winds”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 211, 2021, doi: 10.1016/j.jweia.2021.104559.
  • [9] A. Flaga, “Similarity criteria for linear building objects at aerodynamic and gravitational actions”, in Proceedings of the 14th International Conference on Wind Engineering, Porto Allegre, Brazil. 2015.
  • [10] A. Flaga, R. Kłaput, and M. Augustyn, “Wind tunnel tests of two free-standing lighting protection masts in different arrangements with surrounding roof objects and roof conditions”, Engineering Structures, vol. 124, pp. 539–548, 2016, doi: 10.1016/j.engstruct.2016.06.040.
  • [11] A. Flaga, R. Kłaput, Ł. Flaga, and P. Krajewski, “Wind tunnel model tests of wind action on the chimney with grid-type curtain structure”, Archives of Civil Engineering, vol. 67, no. 3, pp. 177–196, 2021, doi: 10.24425/ace.2021.138050.
  • [12] A. Flaga, “Similarity criteria for the sectional models of power line free-cable bundled conductors at their aeroelastic vibrations”, in Proceedings of the 7th European-African Regional Conference on Wind Engineering. Liege, Belgium, 2017.
  • [13] T. Nowicki and A. Flaga, “Relation between shape and phenomenon of flutter of bridge deck-like bluff bodies”, Archives of Mechanics, vol. 63, no. 2, pp. 201–220, 2011.
  • [14] O. Flamand, J.A. Zuranski, and A. Flaga, “Aerodynamic study of two cable stayed bridges in Poland”, International Journal of Fluid Mechanics Research, vol. 29, no. 3-4, pp. 391–400, 2002.
  • [15] E. Simiu and R. Scanlan, Wind effects on structures. An introduction to wind engineering. Fundamentals and applications to the design, 3rd ed. New York: John Wiley & Sons, 1996.
  • [16] P.S. Westine, F.T. Dodge, and W.E. Baker, Similarity methods in engineering dynamics: theory and practice of scale modelling. Amsterdam: Elsevier Science, 2012.
  • [17] G.I. Barenblatt, Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, 1996.
  • [18] Y. Garbatov, S. Saad-Eldeen, and C. Guedes Soares, “Hull girder ultimate strength assessment based on experimental results and the dimensional theory”, Engineering Structures, vol. 100, pp. 742–750, 2015, doi: 10.1016/j.engstruct.2015.06.003.
  • [19] H. Kenan and O. Azeloglu, “Design of scaled down model of a tower crane mast by using similitude theory”, Engineering Structures, vol. 220, 2020, doi: 10.1016/j.engstruct.2020.110985.
  • [20] Z.J. Song, M.C. Xu, T. Moan, and J. Pan, “Dimensional and similitude analysis of stiffened panels under longitudinal compression considering buckling behaviours”, Ocean Engineering, vol. 187, 2019, doi: 10.1016/j.oceaneng.2019.106188.
  • [21] T. Ma, X. Xing, H. Song, and Ch. Huang, “On similarity criteria of thin-walled cylinder subjected to complex thermomechanical loads”, Thin-Walled Structures, vol. 132, pp. 549–557, 2018, doi: 10.1016/j.tws.2018.09.015.
  • [22] L. Wang, X. Zuo, H. Liu, T. Yue, X. Jia, and J. You, “Flying qualities evaluation criteria design for scaled-model aircraft based on similarity theory”, Aerospace Science and Technology, vol. 90, pp. 209–221, 2019, doi: 10.1016/j.ast.2019.04.032.
  • [23] A. Flaga, “Similarity criteria for linear building objects at aerodynamic and gravitational actions”, in Environmental effects on buildings, structures and people – investigations, studies, applications, A. Flaga, et al. Cracow, Poland: Cracow University of Technology, 2016, pp. 287–293.
  • [24] O. Flamand, “Scale questions in wind engineering experimentation”, Technical Transactions, Civil Engineering, no. 2–B, pp. 51–61, 2015, doi: 10.4467/2353737XCT.15.124.4161.
  • [25] A. Flaga, “Modelling of aerodynamical and mechanical characteristics of different types of wind rotors”, in Recent advances in research on environmental effects on buildings and people, A. Flaga and T. Lipecki, Eds. Cracow, Poland: Polish Association for Wind Engineering, 2010, pp. 65–97.
  • [26] R.G.J. Flay, “Model tests of wind turbines in wind tunnels”, Technical Transactions, Civil Engineering, no. 2–B, pp. 63–81, 2015, doi: 10.4467/2353737XCT.15.125.4162.
  • [27] H. Nakata, T. Kiwata, H. Furumichi, S. Kimura, N. Komatsu, and P. Oshkai, “Wind protection and performance of a cross-flow wind turbine located above a windbreak fence”, in Proceedings of the International Conference on Wind Engineering. Amsterdam 2011.
  • [28] A. Akhgari, O. Barannyk, and P. Oshkai, “Experimental investigation of the performance of a cross-flow wind turbine with and without diffuser”, in Proceedings of the International Conference on Wind Engineering. Amsterdam, 2011.
  • [29] A. Flaga and Ł. Flaga, “Wind tunnel tests and analysis of snow load distribution on three different large size stadium roofs”, Cold Regions Science and Technology, vol. 160, pp. 163–175, 2019, doi: 10.1016/j.coldregions.2019.02.002.
  • [30] A. Flaga, A. Pistol, P. Krajewski, and Ł. Flaga, “Aerodynamic and aeroelastic wind tunnel model tests of overhead power lines in triangular configuration under different icing conditions”, Cold Regions Science and Technology, vol. 170, art. no. 102919, 2020, doi: 10.1016/j.coldregions.2019.102919.
  • [31] G. Kimbar and A. Flaga, “Similarity criteria of snow precipitation and redistribution and snow load simulation in wind tunnel”, in Recent advances in research on environmental effects on buildings and people, A. Flaga and T. Lipecki, Eds. Cracow, Poland: Polish Association for Wind Engineering, 2010, pp. 227–245.
  • [32] A. Flaga, G. Bosak, A. Pistol, and Ł. Flaga, “Wind tunnel model tests of snow precipitation and redistribution on rooftops, terraces and in the vicinity of high-rise building”, Archives of Civil and Mechanical Engineering, vol. 19, no. 4, pp. 1295–1303, 2019, doi: 10.1016/j.acme.2019.07.007.
  • [33] A. Flaga, “Basic principles and theorems of dimensional analysis and the theory of model similarity of physical phenomena”, Technical Transactions, Civil Engineering, no. 2–B pp. 241–272, 2015, doi: 10.4467/2353737XCT.15.135.4172.
  • [34] A.A. Sonin, The physical basis of dimensional analysis. Cambridge: Department of Mechanical Engineering MIT, 2001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03b02566-d423-485a-9d57-11f9f0802564
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.