PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of catalytic pyrolysis of Erzurum-Umutbaca coal by using the thermal analysis method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the study, the catalytic pyrolysis behavior of low-rank Umutbaca coal with the addition of CaO was examined using thermal analysis methods. For this purpose, the effect of adding CaO to coal on both the pyrolysis temperatures of the coal and the composition of the gas and solid product (char) was investigated. Also, the kinetic analysis was carried out to characterize the catalytic pyrolysis process by adding CaO to coal. Using the data obtained in TGA at heating rates of 2.5, 5, and 10 °C/min, the activation energies required for the pyrolysis process of coal both with and without CaO were calculated by KAS and FWO methods. Thermodynamic parameters including ∆H, ∆G, and ∆S were calculated with activation energies obtained from the FWO method. The thermodynamic suitability of adding CaO to a low rank coal such as Umutbaca for the pyrolysis process was investigated.
Czasopismo
Rocznik
Strony
29--37
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., wz.
Twórcy
  • Atatürk University, Engineering Faculty, Chemical Engineering Department, Erzurum, Turkey
  • Atatürk University, Engineering Faculty, Chemical Engineering Department, Erzurum, Turkey
Bibliografia
  • 1. Avila, C.R. (2012). Predicting self-oxidation of coals and coal/biomass blends using thermal and optical methods. Doctor Thesis, The University of Nottingham. https://eprints.nottingham.ac.uk/12710/1/Predicting_self-oxidation_of_coals_and_coalbiomass_blends_using_thermal_and_optical_methods._Claudio_Avila.pdf.
  • 2. Çift, B.D. & Okutan, H. (2013). Turkey’s Energy Vıew, Clean Energy Technologıes and Determination of Appropriate Energy Policy. J. Naval Sci. Engin. 9(1), 81–97. https://dergipark.org.tr/en/download/article-file/105353.
  • 3. Coal (2020). Analysis and forecast to 2025. https://www.iea.org/reports/coal-2020.
  • 4. Dinçer, İ. (2018). TÜBA-Temiz Kömür Teknolojileri Raporu. Ankara.https://www.tuba.gov.tr/files/yayinlar/raporlar/T%C3%9CBATemiz%20K%C3%B6m%C3%BCr%20Teknolojileri%20Raporu.pdf.
  • 5. Odeh, A.O. (2017). Pyrolysis: Pathway to Coal Clean Technologies. https://www.intechopen.com/chapters/54010
  • 6. Porada, S., Rozwadowski, A. & Zubek, K. (2016). Studies of catalytic coal gasification with steam. Polish J. Chem. Technol. 18, 3, 97–102. DOI: 10.1515/pjct-2016-0054.
  • 7. Karimi, A. & Gray, M.R. (2011). Effectiveness and mobility of catalysts for gasification of bitumen coke, Fuel, 90, 120–125. DOI:10.1016/j.fuel.2010.07.032.
  • 8. Nzihou, A., Stanmore, B.Y. & Sharrock, P. (2013). A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 58, 305–317. DOI:10.1016/j.energy.2013.05.057.
  • 9. Arenillas, A., Rubiera, F. & Pis, J.J. (1999). Simultaneous thermogravimetric – mass spectrometric study on the pyrolysis behavior of different rank coals. J. Anal. Appl. Pyrol. 50(1), 31–46. DOI:10.1016/S0165-2370(99)00024-8.
  • 10. Arenillas, A., Rubiera, F., Pevida C. & Pis, J.J.A. (2001). comparison of different methods for predicting Coal devolatilisation kinetics. J. Anal. Appl. Pyrol. 58–59, 685–701. DOI: 10.1016/S0165-2370(00)00183-2.
  • 11. Arenillas, A., Rubiera, F., Pis, J.J., Jiménez, A. & Suárez--Ruiz, I. (2003). Thermal behavior during the pyrolysis of low rank perhydrous coals. J. Anal. Appl. Pyrol. 68–69, 371–385. DOI: 10.1016/S0165-2370(03)00031-7.
  • 12. Akahira, T. & Sunose, T. (1971). Joint Convention of four electrical institutes. Sci. Technol. 16, 22–31.
  • 13. Kissinger, H. (1956). Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nation. Bureau Stand. 57(4), 217–221.
  • 14. Flynn, J. & Wall, L. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B: Pol. Letters, 4(5), 323–328.
  • 15. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan, 38, 1881–1886.
  • 16. Evans, M.G. & Polanyi, M. (1935). Some applications of transition state method to calculation of reaction velocities, especially in solution. J. Chem. Soc. Faraday Trans. 31, 875–894. https://pubs.rsc.org/en/content/articlelanding/1935/tf/tf9353100875.
  • 17. Eyring, H. (1935). The activated complex in chemical reactions. J. Chem. Phys. 3 (2), 107–115. DOI: 10.1021/cr60056a006.
  • 18. Küçük, E. (2023). Erzurum (Oltu) Umutbaca Kömürünün Katalitik Pirolizinin Termal Analiz Yöntemi ile İncelenmesi, Master Thesis, Atatürk University. Graduate School of Natural Appl.Sci. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • 19. Iordanidis, A., Georgakopoulos, A., Markova, K., Filipiddis, A. & Kassoli-Fournaraki, A. (2001). Application of TG-DTA to the study of Amynteon lignites, northern Greece Therm. Chim. Acta, 371, 137. DOI: 10.1016/S0040-6031(01)00418-X.
  • 20. Jia, Y., Huang, J. & Wang, Y. (2004) Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed, Energy Fuels, 18(6), 1625–1632. DOI: 10.1021/ef034077v.
  • 21. Yang, J. & Cai, N. (2006). A TG-FTIR study on catalytic pyrolysis of coal. J. Fuel Chem. Technol. 34(6). DOI: 10.1016/S1872-5813(07)60002-4.
  • 22. Fu, Y., Guo, Y.H. & Zhang, K. (2016). Effect of Three Different Catalysts (KCl, CaO, and Fe2O3) on the Reactivity and Mechanism of Low-Rank Coal Pyrolysis. Energy Fuels 30, 2428−2433. DOI: 10.1021/acs.energyfuels.5b02720.
  • 23. Prabhakar, A., Sadhukhan, A.K., Mallick, R. & Gupta, P. (2019). Study of pyrolysis kinetics and characterization using TG-FTIR, GC, and BET using high ash Indian sub-bituminous coal, in press. Energy Sourc., Part A: Recovery, Utilization, Environ. Effects, 46(1), 4419–4434. DOI: 10.1080/15567036.2019.1704311.
  • 24. Zhu, T.Y., Liu, L.P., Wang, Y. & Huang, J.J. (2000). Study on coal mild gasification with CaO catalyst. J. Fuel Chem. Tech. 28(1), 36–39.
  • 25. Wang, W., Lemaire, R., Bensakhria, A. & Luart, D. (2022). Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrol. 163, 105479. DOI: 10.1016/j.jaap.2022.105479.
  • 26. Barzegar, R., Avsaroglu, S., Yozgatligil, A. & Atimtay, A.T. (2018). Pyrolysis characteristics of Turkish lignites in N2 and CO2 environments. Energy Sourc., Part A: Recovery, Utilization, and Environ. Effects, 40(20), 2467–2475. DOI: 10.1080/15567036.2018.1502845.
  • 27. Yan, J., Yang, Q., Zhang, L., Lei, Z., Li, Z., Wang, Z., Ren, S., Kang, S. & Shui, H. (2020). Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods. Carbon Resources Conv. 3, 173–181. DOI: 10.1016/j.crcon.2020.11.002.
  • 28. Xu, Y. & Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Biores. Tech. 146, 485–493. DOI: 10.1016/j.biortech.2013.07.086.
  • 29. Merdun, H. & Laouge, Z.B. (2021). Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA, Renewable Energy, 163 453–464. DOI: 10.1016/j.renene.2020.08.120.
  • 30. Mallick, D., Poddar, M.K., Mahantaa, P. & Moholkar, V.S. (2018). Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Biores. Tech. 261, 294–305. DOI:10.1016/j.biortech.2018.04.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03aa7031-8a35-4a9a-88ff-b7c099ab507c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.