PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mid-wave InAs/GaSb superlattice barrier infrared detectors with nBnN and pBnN design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present an investigation of optical and electrical properties of mid-wavelength infrared (MWIR) detectors based on InAs/GaSb strained layer superlattices (SLs) with nBnN and pBnN design. The temperature-dependent behavior of the bandgap was investigated on the basis of absorption measurements. A 50% cut-off wavelength of around 4.5 μm at 80 K and increase of up to 5.6 μm at 290 K was found. Values of Varshni parameters, zero temperature bandgap E0 and empirical coefficients α and β were extracted. Arrhenius plots of dark currents of nBnN and pBnN detectors were compared with the p-i-n design. Dark current density reduction in nBnN and pBnN detectors is observed in comparison to the p-i-n device. This shows a suppression of Shockley-Read-Hall (SRH) processes by means of introducing barrier architecture.
Rocznik
Strony
317--323
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego St., Wrocław, Poland
autor
  • Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210, USA
Bibliografia
  • [1] C. Cervera, I. Ribet-Mohamed, R. Taalat, J. P. Perez, P. Christol, and J. B. Rodriguez, “Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain”, J. Electron. Mater. 41, 2714–2718 (2012).
  • [2] N. Gautam, H.S. Kim, M.N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers”, Appl. Phys. Lett. 96, 231107 (2010).
  • [3] Y. Wei, A. Gin, M. Razeghi, and G.J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications”, Appl. Phys. Lett. 80, 3262–3264 (2002).
  • [4] E. Plis, “InAs/GaSb Type-II Superlattice Detectors”, Advances in Electronics 246769 (2014).
  • [5] A. Rogalski, M. Kopytko, and P. Martyniuk, “InAs.GaSb type-II superlattice infrared detectors: three decades of development”, Proc. of SPIE 10177, 1017715 (2017).
  • [6] D.L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors”, J. Appl. Phys. 62, 2545‒48 (1987).
  • [7] C. Mailhiot, “Far-infrared materials based on InAs/GaInSb type II, strained-layer superlattices”, in Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, ed. M. O. Manasreh, 109–38, Artech House, Boston, MA, 1993.
  • [8] D. Zuo, P. Qiao, D. Wasserman, and S.L. Chuang, “Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control”, Appl. Phys. Lett. 102, 141107 (2013).
  • [9] Y. Aytac, B.V. Olson, J.K. Kim, E.A. Shaner, S.D. Hawkins, J.F. Klem, M.E. Flatte, and T.F. Boggess, “Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices”, Appl. Phys. Lett. 105, 022107 (2014).
  • [10] E. Plis, M.N. Kutty, and S. Krishna, “Passivation techniques for InAs/GaSb strained layer superlattice detectors”, Laser Photonics Rev. 7(1), 45–59 (2013).
  • [11] E.K. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, ”Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes”, Appl. Phys. Lett. 94, 053506‒1‑3 (2009).
  • [12] R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa1‑xAsySb1‑y”, Appl. Phys. Lett. 86, 173501‒1–3 (2005).
  • [13] P.Y. Delaunay, A. Hood, B.M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAs/GaSb double heterostructure”, Appl. Phys. Lett. 91, 091112‒1‑3 (2007).
  • [14] G. Chen, B.-M. Nguyen, A.M. Hoang, E.K. Huang, S.R. Darvish, and M. Razeghi, “Elimination of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors”, Appl. Phys. Lett. 99, 183503 (2011).
  • [15] R. Rehm, F. Lemke, M. Masur, J. Schmitz, T. Stadelmann, M. Wauro, A. Wörl, and M. Walther, “InAs/GaSb superlattice infrared detectors”, Infrared Phys. Technol. 70, 87–92 (2015).
  • [16] S. Maimon and G. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature”, Appl. Phys. Lett. 89, 151109‒1–3 (2006).
  • [17] P. Klipstein, “XBn” barrier photodetectors for high sensitivity and high operating temperature infrared sensors”, Proc. of SPIE 6940, 69402U (2008).
  • [18] P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, “XBn barrier detectors for high operating temperatures”, Proc. of SPIE 7608, 76081V (2010).
  • [19] D.Z. Ting, A. Soibel, J. Nguyen, C.J. Hill, S.A. Keo, J.M. Mumolo, and S.D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector”, Appl. Phys. Lett. 95, 023508 (2009).
  • [20] A. Khoshakhlagh, J.B. Rodriguez, E. Plis, G.D. Bishop, Y.D. Sharma, H.S. Kim, L.R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer superlattice detectors”, Appl. Phys. Lett. 91, 263504 (2007).
  • [21] J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, “nBn structure based on InAs/ GaSb type-II strained layer superlattices”, Appl. Phys. Lett. 91, 043514 (2007).
  • [22] H.S. Kim, E. Plis, J.B. Rodriguez, G.D. Bishop, Y.D. Sharma, L.R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, “Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design”, Appl. Phys. Lett. 92, 183502 (2008).
  • [23] A. Khoshakhlagh, S. Myers, H.S. Kim, E. Plis, N. Gautam, S.J. Lee, S.K. Noh, L.R. Dawson, and S. Krishna, “Long-wave InAs/GaSb superlattice detectors based on nBn and Pin designs”, IEEE J. Quant. Electron. 46(6), 959‒964 (2010).
  • [24] P.C. Klipstein, E. Avnon, D. Azulai, Y. Benny, R. Fraenkel, A. Glozman, E. Hojman, O. Klin, L. Krasovitsky, L. Langof, I. Lukomsky, M. Nitzani, I, Shtrichman, N. Rappaport, N. Snapi, E. Weiss, and A. Tuito, “Type II superlattice technology for LWIR detectors”, Proc. SPIE 9819, 98190T (2016).
  • [25] B. Klein, E. Plis, M.N. Kutty, N. Gautam, A. Albrecht, S. Myers and S. Krishna, “Varshni parameters for InAs/GaSb strained layer superlattice infrared photodetectors”, J. Phys. D: Appl. Phys. 44, 075102 (2011).
  • [26] P. Martyniuk, W. Gawron, D. Stępień, D. Benyahia, A. Kowalewski, K. Michalczewski, and A. Rogalski, ”Demonstration of mid-wavelength type-II superlattice InAs/GaSb single pixel barrier detectors with GaAs immersion lens”, IEEE Electron Dev. Lett. 37(1), 64‑65 (2016).
  • [27] Y.P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica 34(1), 149‒154 (1967).
  • [28] M. Levinstein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters vol. 1 and 2 (London: World Scientific, 1999).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03a2d7be-ffe5-42a9-97bf-f86768543680
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.