PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomechanical simulation of needle insertion into cornea based on distortion energy failure criterion

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper is mainly about biomechanical behavior of needle insertion into cornea, and proposes a failure criterion to simulate the insertion process which has attracted considerable attention due to its importance for the minimally invasive treatment. Methods: In the process of needle insertion into cornea, tiny and complex insertion force is generated due to contact between needle and soft tissue. Based on the distortion energy theory, there is proposed a failure criterion of corneal material that can solve contact problem between rigid body and biological tissue in insertion simulation, where Cauchy stress of corneal material is the key to numerical calculation. A finite element model of in vivo cornea is built, and the cornea constrained by sclera is simplified to two layers containing epithelium and stroma. Considering the hyper-viscoelastic property of corneal material, insertion simulation is carried out. Results: By insertion experiment, the insertion force increases with insertion depth accompanying obvious fluctuations. Different insertion forces are generated at different speeds. The punctured locations are obvious in the force-displacement curves. The results of insertion simulation are generally consistent with experimental data. Maps of von Mises stress reflect the tissue injury of the cornea during insertion process, and punctured status corresponds to the point in the curves. Conclusions: The ability of this study to reproduce the behavior of needle insertion into cornea opens a promising perspective for the control of robotic surgery operation as well as the real-time simulation of corneal suture surgery.
Rocznik
Strony
65--75
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Design and Automation, BeiHang University, Beijing, China
autor
  • Department of Mechanical Design and Automation, BeiHang University, Beijing, China
autor
Bibliografia
  • [1] ABOLHASSANI N., PATEL R., MOALLEM M., Needle insertion into soft tissue: A survey, Med. Eeg. Phys., 2007, 29(4), 413–431.
  • [2] ALTMAN D.A., HOETZEL D.A., BUZARD K., CHOE K., Strip extensiometry for comparison of the mechanical response of bovine, rabbit and human corneas, J. Biomech. Eng., 1992, 114(2), 202–215.
  • [3] ANDERSON K., EL-SHEIKH A., NEWSON T., Application of structural analysis to the mechanical behaviour of the cornea, J. R. Soc. Interface, 2004, 1(1), 3–15.
  • [4] BERKLEY J., TURKIYYAH G., BERG D., GANTER M., WEGHORST S., Real-time finite element modeling for surgery simulation: An application to virtual suturing, IEEE T. Vis. Comput. Gr., 2004, 10(3), 314–325.
  • [5] BISPLINGHOFF J.A., MC-NALLY C., MANOOGIAN S.J., DUMA S.M., Dynamic material properties of the human sclera, J. Biomech., 2009, 42(10), 1493–1497.
  • [6] BOSCHETTI F., TRIACCA V., SPINELLI L., PANDOLFI A.. Mechanical characterization of porcine corneas, J. Biomech. Eng., 2012, 134(3), 031003.
  • [7] DAVIS S.P., LANDIS B.J., ADAMS Z.H., ALLEN M.G., Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force, J. Biomech., 2004, 37, 1155–1163.
  • [8] DIMAIO S.P., SALCUDEAN S.E., Needle insertion modeling and simulation, IEEE Trans. Robot. and Autom., 2003, 19(5), 864–875.
  • [9] EHLERS N., HJORTDAL J., Corneal thickness: measurement and implications, Exp. Eye. Res., 2004, 78(3), 543–548.
  • [10] ELSHEIKH A., ALHASSO D., RAMA P., Biomechanical properties of human and porcine corneas, Exp. Eye. Res., 2008, 86(5), 783–790.
  • [11] ELSHEIKH A., KASSEM W., JONES S.W., Strain-rate sensitivity of porcine and ovine corneas, Acta Bioeng. Biomech., 2011, 13(2), 25–36.
  • [12] FANG X., XU Y., Corneal stress-strain relation and structural equation of porcine eye after LASIK, Int. J. Ophthalmol., 2006, 6(6).
  • [13] FRATZL P., MISOF K., ZIZAK I., RAPP G., AMENITSCH H., BERNSTORFF S., Fibrillar structure and mechanical properties of collagen, J. Struct. Biol., 1998, 122(1), 119–122.
  • [14] GERE J.M., GOODNO B.J., Mechanics of Materials, Cengage Learning, 2009.
  • [15] GENT A.N., Engineering with rubber: how to design rubber components, Carl Hanser Verlag GmbH Co., KG, 2012.
  • [16] HATAMI-MARBINI H., Viscoelastic shear properties of the corneal stroma, J. Biomech., 2014, 47(3), 723–728.
  • [17] HOLZAPFEL G.A., Nonlinear solid mechanics, Chichester, Wiley, 2000.
  • [18] JONES R.M., Mechanics of composite materials, CRC Press, 1998.
  • [19] LI L., TIGHE B., The anisotropic material constitutive models for the human cornea, J. Struct. Biol., 2006, 153(3), 223–230.
  • [20] MARSHALL P., PAYANDEH S., DILL J., Suturing for surface meshes, CCA, 2005, 31–36.
  • [21] OKAMURA A.M., SIMONE C., O'LEARY M.D., Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng., 2004, 51(10), 1707–1716.
  • [22] PANDOLFI A., MANGANIELLO F., A model for the human cornea: constitutive formulation and numerical analysis, Biomech. Model. Mechan., 2006, 5(4), 237–246.
  • [23] ROESTHUIS R.J., VAN-VEEN Y.R., JAHYA A., MISRA S., Mechanics of needle-tissue interaction, IROS, 2011, 2557–2563.
  • [24] STITZEL J.D., DUMA S.M., CORMIER J.M., HERRING I.P., A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture, Stapp car Crash Journal, 2002, 46, 81–102.
  • [25] STUDER H.P., RIEDWYL H., AMSTUTZ C.A., HANSON J.V., BUCHLER P., Patient-specific finite-element simulation of the human cornea: A clinical validation study on cataract surgery, J. Biomech., 2013, 46(4), 751–758.
  • [26] SU P., YANG Y., XIAO J., SONG Y., Corneal Hyperviscoelastic Model: Derivations, Experiments, and Simulations, Acta Bioeng. Biomech., 2015, 17(2), 73–84.
  • [27] VAN-GERWEN D.J., DANKELMAN J., VAN-DEN-DOBBELSTEEN J.J., Needle–tissue interaction forces – A survey of experimental data, Med. Eng. Phys., 2012, 34(6), 665–680.
  • [28] XUAN X., YANG Y., WANG Z., DENG S., LIU X., Force modeling for needle insertion into corneal tissue, Chinese High Technology Letters, 2009, (9), 951–956.
  • [29] YAN J., STRENKOWSKI J.S., A finite element analysis of orthogonal rubber cutting, J. Mater. Process. Tech., 2006, 174(1), 102–108.
  • [30] YANG Y., LIU X., FU H., Finite Element Simulation of Needle Insertion into Cornea, Chin. J. Mech. Eng., 2008, 44(12), 24–29.
  • [31] YANG Y., XU C., DENG S., XIAO J., Insertion force in manual and robotic corneal suturing, Int. J. Med. Robot. Comp., 2012, 8(1), 25–33.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03a13563-b975-4610-815a-704ddc4f970b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.