Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The accurate prediction of iron losses has become a prominent problem in electromagnetic machine design. The basis of all iron loss models is found in the spatial field-locus of the magnetic flux density (B) and magnetic field (H). In this paper the behavior of the measured BH-field-loci is considered in FEM simulation. For this purpose, a vector hysteresis model is parameterized based on the global measurements, which then can be used to reproduce the measurement system and obtain more detailed insights on the device and its local field distribution. The IEM has designed a rotary loss tester for electrical steel, which can apply arbitrary BH-field-loci occurring during electrical machine operation. Despite its simplicity, the proposed pragmatic analytical model for vector hysteresis provides very promising results.
Czasopismo
Rocznik
Tom
Strony
173--183
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wz.
Twórcy
autor
- RWTH Aachen University, Institute of Electrical Machines, Germany
autor
- RWTH Aachen University, Institute of Electrical Machines, Germany
autor
- RWTH Aachen University, Institute of Electrical Machines, Germany
autor
- RWTH Aachen University, Institute of Electrical Machines, Germany
Bibliografia
- [1] Leite J.V., Benabou A., da Silva P.A., Sadowski N., Henneron T., Clénet S., Kuo-Peng P., Piriou F., Batistela N.J., Analysis of a rotational single sheet tester using 3D finite element model taking into account hysteresis effect, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, vol. 26, no. 4, pp. 1037–1048 (2007).
- [2] Leite J.V., da Silva P.A., Sadowski N., Batistela N., Peng P.K., Bastos J.P.A., Vector Hysteresis Under Nonsinusoidal Induction Waveforms: Modeling and Experimentation, IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 906–909 (2008).
- [3] Leite J.V., Ferreira da Luz M.V., Sadowski N., da Silva P.A., Modelling Dynamic Losses Under Rotational Magnetic Flux, IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 895–898 (2012).
- [4] Thul A., Steentjes S., Schauerte B., Klimczyk P., Denke P., Hameyer K., Rotating magnetizations in electrical machines: Measurements and modeling, AIP Advances, vol. 8, no. 5, AIP Advances 8, 56815 (2018).
- [5] Fiorillo F., Mayergoyz I.D., Characterization and Measurement of Magnetic Materials, Burlington: Elsevier (2004).
- [6] Geuzaine C., Steentjes S., Hameyer K., Henrotte F., Pragmatic two-step homogenisation technique for ferromagnetic laminated cores, IET Science, Measurement & Technology, vol. 9, no. 2, pp. 152–159 (2015).
- [7] Glehn G., Steentjes S., Hameyer K., Pulsed-Field Magnetometer Measurements and Pragmatic Hysteresis Modeling of Rare-Earth Permanent Magnets, IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1–4 (2018).
- [8] Mayergoyz I.D., Vector Preisach hysteresis models (invited), IEEE Transactions on Magnetics, vol. 63, no. 8, pp. 2995–3000 (1988).
- [9] Matsuo T., Shimasaki M., Isotropic vector hysteresis represented by superposition of stop hysteron models, IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3357–3361 (2001).
- [10] Matsuo T., Anisotropic Vector Hysteresis Model Using an Isotropic Vector Play Model, IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 3041–3044 (2010).
- [11] Sadowski N., Batistela N.J., Bastos J.P.A., Lajoie-Mazenc M., An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calculations, IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 797–800 (2002).
- [12] Dlala E., Magnetodynamic Vector Hysteresis Models for Steel Laminations of Rototing Electrical Machines (2008).
- [13] Hantila F., Electromagnetic Field in Non-Linear Media, Balkan Journal of Geometry and Its Applications: BJGA, vol. 4, no. 2 pp. 49–62 (1999).
- [14] Mathekga M.E., McMahon R.A., Knight A.M., Application of the Fixed Point Method for Solution in Time Stepping Finite Element Analysis Using the Inverse Vector Jiles-Atherton Model, IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3048–3051 (2011).
- [15] Dlala E., Arkkio A., Analysis of the Convergence of the Fixed-Point Method Used for Solving Nonlinear Rotational Magnetic Field Problems, IEEE Transactions on Magnetics, vol. 44, no. 4, pp. 473–478 (2008).
- [16] Dlala E., Belahcen A., Arkkio A., A Fast Fixed-Point Method for Solving Magnetic Field Problems in Media of Hysteresis, IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1214–1217 (2008).
- [17] Gyselinck J., Dular P., Sadowski N., Leite J., Bastos J.P.A., Incorporation of a Jiles-Atherton vector hysteresis model in 2D FE magnetic field computations, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, vol. 23, no. 3, pp. 685–693 (2004).
- [18] Kruttgen C., Steentjes S., Glehn G., Hameyer K., Parametric homogenized model for inclusion of eddy currents and hysteresis in 2-D finite element simulation of electrical machines, IEEE Conference on Electromagnetic Field Computation (CEFC) November 2016, Miami, FL, p. 1 (2017), DOI:10.1109/TMAG.2017.2660460.
- [19] Eggers D., Steentjes S., Hameyer K., Advanced Iron-Loss Estimation for Nonlinear Material Behavior, IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3021–3024 (2012).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-039c1150-4708-45d5-878f-90d74057dfd4