PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generatory termoelektryczne - zasada działania, budowa, zastosowania

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Thermoelectric Generators - Operating Principle, Design, Applications
Języki publikacji
PL
Abstrakty
PL
Zmniejszenie emisji gazów cieplarnianych jest jednym z głównych wyzwań stojących przed ludzkością w nadchodzących latach. Dlatego celem dla naukowców i przemysłu jest poszukiwanie alternatywnych źródeł energii oraz zmniejszenia zużycia energii przez zwiększenie wydajności produkcji, dystrybucji i końcowego wykorzystania z uwzględnieniem procesów odzyskiwania energii. Technologia termoelektryczna (TE) jest uważana za alternatywną i przyjazną w odniesieniu do środowiska technologię pozyskiwania i odzyskiwania ciepła. Generatory termoelektryczne (TEG) wykorzystują efekt Seebecka do bezpośredniej konwersji ciepła w energię elektryczną. Artykuł przybliża czytelnikowi zasadę działania TEG, stosowane materiały termoelektryczne oraz możliwe zastosowania. Tym samym zwraca uwagę, na wciąż niewykorzystywany w pełni potencjał generatorów termoelektrycznych i zauważa, że dalsze prace nad rozwojem tej technologii są konieczne.
EN
Reducing greenhouse gas emissions is one of the major challenge facing humanity in the coming years. Therefore, the goal for researchers and industry is to seek alternative sources of energy and to reduce energy consumption by increasing the efficiency of production, distribution and end-use, taking into account energy recovery processes. Thermoelectric (TE) technology is considered as an alternative and environmentally friendly technology for heat harvesting and recovery. Thermoelectric generators (TEG) use the Seebeck effect to directly convert thermal energy into electrical energy. This article introduces the reader to the principle of TEG, the thermoelectric materials used and possible applications. It also draws attention to the still not fully exploited potential of thermoelectric generators and notes that further development of this technology necessary.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Katedra Klimatyzacji, Ogrzewnictwa, Gazownictwa i Ochrony Powietrza, Wydział Inżynierii Środowiska, Politechnika Wrocławska
Bibliografia
  • [1] Allied Market Research. 2021. “Thermoelectric Generator (TEG) Market by Material (Bismuth Telluride, Lead Telluride, and Others), Application (Waste Heat Recovery, Consumer Harvesting, Direct Power Generation, and Co-Generation), and End-Use Industry (Automotive, Aerospace, Industrial,.” 2021. https://www.alliedmarketresearch.com/thermoelectric-generator-market.
  • [2] Ando Junior, O. H., A. L.O. Maran, N. C. Henao. 2018. “A Review of the Development and Applications of Thermoelectric Microgenerators for Energy Harvesting.” Renewable and Sustainable Energy Reviews 91 (April 2017): 376-93. https://doi.org/10.1016/j.rser.2018.03.052.
  • [3] Assareh, Ehsanolah, Seyed Mojtaba Alirahmi, Pouria Ahmadi. 2021. “A Sustainable Model for the Integration of Solar and Geothermal Energy Boosted with Thermoelectric Generators (TEGs) for Electricity, Cooling and Desalination Purpose.” Geothermics 92 (December 2020): 102042. https://doi.org/10.1016/j.geothermics.2021.102042.
  • [4] Champier, Daniel. 2017. “Thermoelectric Generators: A Review of Applications.” Energy Conversion and Management 140: 167-81. https://doi.org/10.1016/j.enconman.2017.02.070.
  • [5] Fallah Kohan, H. R., M. Eslami, K. Jafarpur. 2023. “Thermal Influence of Thermoelectric Modules on Performance of Hybrid PV-TEG Systems: Effects of TEG Type, Arrangement and Working Condition.” International Communications in Heat and Mass Transfer 147: 106969. https://doi.org/10.1016/j.icheatmasstransfer.2023.106969.
  • [6] Fieducik, Jolanta. 2016. „Fotowoltaika Skoncentrowana, Osiągnięcia i Perspektywy Rozwoju”. Czasopismo Inżynierii Lądowej, Środowiska i Architektury 63: 431-44.
  • [7] Hussein, Hiba Ali, Zhonglai Wang, W. K. Alani, J. Zheng, M.A. Fayad. 2023. “A Novel Experimental Design for Free Energy from the Heat-Gaining Panel Using Multi-Thermoelectric Generators (TEGs) Panel.” Case Studies in Thermal Engineering 50 (June): 1-15. https:// doi.org/10.1016/j.csite.2023.103431.
  • [8] Indiraa, Sridhar Sripadmanabhan, Chockalingam Aravind Vaithilingama, Kok-Keong Chongb, R. Saidur, M. Faizala, Shamsu Abubakare, Suriati Paiman. 2020. “A Review on Various Configurations of Hybrid Concentrator Photovoltaic and Thermoelectric Generator System.” Solar Energy 201 (March): 122-48. https://doi.org/10.1016/j.solener. 2020.02.090.
  • [9] Jaziri, Nesrine, Ayda Boughamoura, Jens Müller, Brahim Mezghani, Fares Tounsi, Mohammed Ismail. 2020. “A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications.” Energy Reports 6: 264-87. https://doi.org/10.1016/j.egyr.2019.12.011.
  • [10] Kandi, Remya Pulisseri, Manju M. Sudharmini, Abhilash Suryan, Sandro Nižetić. 2023. “State of the Art and Future Prospects for TEG- -PCM Systems: A Review.” Energy for Sustainable Development 74 (February): 328-48. https://doi.org/10.1016/j.esd.2023.04.012.
  • [11] Lae Yi Win, Sein, Chu Tsen Liao, Heui Yung Chang, Chi Ming Lai. 2023. “Experimental Observations on Electricity Generation and Thermal Characteristics of TEG Façades.” Energy and Buildings 294 (May): 113225. https://doi.org/10.1016/j.enbuild.2023.113225.
  • [12] Lekbir, Abdelhak, Samir Hassani, Saad Mekhilef, R. Saidur, Mohd Ruddin Ab Ghani, Chin Kim Gan. 2021. “Energy Performance Investigation of Nanofluid-Based Concentrated Photovoltaic/Thermal-Thermoelectric Generator Hybrid System.” International Journal of Energy Research 45 (6): 9039-57. https://doi.org/10.1002/er.6436.
  • [13] Li, Kewen, Geoffrey Garrison, Yuhao Zhu, Michael Moore, Changwei Liu, Jay Hepper, Larry Bandt, Roland Horne, Susan Petty. 2021. “Thermoelectric Power Generator: Field Test at Bottle Rock Geothermal Power Plant.” Journal of Power Sources 485 (December 2020): 229266. https://doi.org/10.1016/j.jpowsour.2020.229266.
  • [14] Liu, Wei-di, De-zhuang Wang, Qingfeng Liu, Wei Zhou, Zongping Shao, Zhi-gang Chen. 2020. “High-Performance GeTe-Based Thermoelectrics : From Materials to Devices.” Advanced Energy Materials 10. https://doi.org/10.1002/aenm.202000367.
  • [15] Liu, Wei-di, Lei Yang, and Zhi-gang Chen. 2020. “Cu2Se Thermoelectrics: Property, Methodology, Device.” Nano Today 35. https://doi. org/10.1016/j.nantod.2020.100938.
  • [16] Mamur, Hayati, Ömer Faruk Dilmaç, Jahanara Begum, Mohammad Ruhul Amin Bhuiyan. 2021. “Thermoelectric Generators Act as Renewable Energy Sources.” Cleaner Materials 2 (May): 100030. https://doi.org/10.1016/j.clema.2021.100030.
  • [17] Menon, Akanksha K., Shannon K. Yee. 2016. “Design of a Polymer Thermoelectric Generator Using Radial Architecture.” Journal of Applied Physics 119 (5). https://doi.org/10.1063/1.4941101.
  • [18] Qiu, Pengfei, Xun Shi, Lidong Chen. 2016. “Cu-Based Thermoelectric Materials.” Energy Storage Materials 3: 85-97. https://doi.org/ 10.1016/j.ensm.2016.01.009.
  • [19] Reaserch and Markets. 2023. “Thermoelectric Generators Market by Application (Waste Heat Recovery, Energy Harvesting, Direct Power Generation, Co-Generation), Temperature (500°C) Wattage, Type, Material, Vertical, Component, Region – Global Forecast to 2027.” 2023. https://www.researchandmarkets.com/report/thermoelectric-generator?utm_source=GNOM&utm_medium=PressRelease&utm_code=5nd6 dx&utm_campaign=1582688+-+Global+Thermoelectric+Generators+ Market+Report+2021%3A+Winners+of+the+Market+are+Gentherm% 2C+II-VI%2C+Ferrote.
  • [20] Research and Markets. 2021. “Global Thermoelectric Generators Market Report 2021: Winners of the Market Are Gentherm, II-VI, Ferrotec, Laird Thermal System, Komatsu, and TEC Microsystems.” 2021. https://www.globenewswire.com/news-release/2021/08/30/2288096/28124/en/Global-Thermoelectric-Generators-Market-Report-2021-Winnersof-the-Market-are-Gentherm-II-VI-Ferrotec-Laird-Thermal-SystemKomatsu-and-TEC-Microsystems.html.
  • [21] Shaito, Ali, Hicham El Hage, Jalal Faraj, Mehdi Mortazavi, Thierry Lemenand, Mahmoud Khaled. 2023. “Thermal Modeling and Parametric Study of TEG Power Generation from the Exhaust Gas of Boilers and Cold Oil Tank.” Energy Reports 9 (February): 51-58. https://doi.org/10.1016/j.egyr.2023.05.248.
  • [22] Sidorczyk, Marek. 2016. “Wykorzystanie Ciepła Do Lokalnego Wytwarzania Energii Pomocniczej Dla Systemów Cieplnych.” Rozprawa Doktorska, Politechnika Wrocła, Wydział Inżynierii Środowiska.
  • [23] Tohidi, Farzad, Shahriyar Ghazanfari Holagh, Ata Chitsaz. 2022. “Thermoelectric Generators: A Comprehensive Review of Characteristics and Applications.” Applied Thermal Engineering 201 (PA): 117793. https://doi.org/10.1016/j.applthermaleng.2021.117793.
  • [24] Twaha, Ssennoga, Jie Zhu, Yuying Yan, Bo Li. 2016. “A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement.” Renewable and Sustainable Energy Reviews 65: 698-726. https://doi.org/10.1016/j. rser.2016.07.034.
  • [25] Yang, Bo, Rui Xie, Jinhang Duan, Jingbo Wang. 2023. “State-of-the- -Art Review of MPPT Techniques for Hybrid PV-TEG Systems: Modeling, Methodologies, and Perspectives.” Global Energy Interconnection 6 (5): 567-91. https://doi.org/10.1016/j.gloei.2023.10.005.
  • [26] Zare, V., V. Palideh. 2018. “Employing Thermoelectric Generator for Power Generation Enhancement in a Kalina Cycle Driven by Low-Grade Geothermal Energy.” Applied Thermal Engineering 130: 418-28. https://doi.org/10.1016/j.applthermaleng.2017.10.160.
  • [27] Ziapour, Behrooz M., Mohammad Saadat, Vahid Palideh, Sadegh Afzal. 2017. “Power Generation Enhancement in a Salinity-Gradient Solar Pond Power Plant Using Thermoelectric Generator.” Energy Conversion and Management 136: 283-93. https://doi.org/10.1016/j. enconman.2017.01.031.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-039b394f-a6da-43ee-8345-bd2455b7f1bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.