Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Gamma titanium aluminides are fast developing materials and particularly in use for aerospace and automotive components. Due to the high cutting forces and raised cutting temperatures achieved during milling of this material, tool-wear is a crucial factor. Thus, increasing of the cutting speed leads to a significant rise of the cutting temperature. On the one hand, the implementation of innovative cooling strategies can reduce the heat flux in the cutting tool. On the other hand, analysing of the heat generation during the cutting process can lead to improved machining strategies. Previous research attempts assess microstructural and chip formation, as well as tool-wear in finish milling of this material. However, few have investigated the optimal cutting strategies in roughing and finishing of titanium aluminides. In this study, the milling operation under high feed rate should be investigated and the potential to improve chip removal rate and tool life should be determined.
Czasopismo
Rocznik
Tom
Strony
63--72
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- TU Wien, Institute of Production Engineering and Photonic Technologies (IFT), Wien, Austria
autor
- TU Wien, Institute of Production Engineering and Photonic Technologies (IFT), Wien, Austria
Bibliografia
- [1] CASTELLANOS S.D., CAVALEIRO A.J., JESUS A.M.P.D., NETO R., ALVES J.L., 2019, Machinability of titanium aluminides : a review, Journal of Materials: design and applications, 233, 3, 426–451.
- [2] CLEMENS H., 2011, Intermetallisches titanaluminid – ein innovativer leichtbauwerkstoff für hochtemperatur – anwendungen, BHM, 156, 255–260.
- [3] MANTLE A.L., ASPINWALL D.K., 1997, Surface integrity and fatigue life of turned gamma titanium aluminide, Journal of Materials Processing Technology, 72, 413–420.
- [4] APPEL F., OEHRING M., WAGNER R., 2000, Novel design concepts for gamma-base titanium aluminide alloys, Intermetallics, 8, 1283–1312.
- [5] HADI M., MERATIAN M., SHAFYEI A., 2015, The effect of lanthanum on the microstructure and high temperature mechanical properties of a beta-solidifying TiAl alloy, Journal of Alloys and Compounds, 618, 27–32.
- [6] KOLAHDOUZ S., HADI M., AREZOO B., ZAMANI S., 2015, Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions, Procedia CIRP, 26, 367–372.
- [7] RAHMAN M., WONG Y.S., ZAREENA A.R., 2003, Machinability of titanium alloys, JSME International Journal Series C, 107–115.
- [8] M’SAOUBI R., OUTEIRO J.C., CHANDRASEKARAN H.,. DILLON JR. O.W., JAWAHIR I.S., 2008, A review of surface integrity in machining and its impact on functional performance and life of machined products, International Journal of Sustainable Manufacturing, 1, 1/2, 203.
- [9] PRIARONE P.C., KLOCKE F., FAGA M.G., LUNG D., SETTINERI L., 2016, Tool life and surface integrity when turning titanium aluminides with pcd tools under conventional wet cutting and cryogenic cooling, International Journal of Advanced Manufacturing Technology, 85, 807–816.
- [10] FINKELDEI D., BLEICHER F., 2016, Investigation of coolants in machining of titanium aluminides, DAAAM International Symposium, 26, 0825–0833.
- [11] KLOCKE F., SETTINERI L., LUNG D., PRIARONE C.P., ARFT M., 2013, High performance cutting of gamma titanium aluminides: influence of lubricoolant strategy on tool wear and surface integrity, Wear, 302/1–2, 1136–1144.
- [12] NIESLONY P., GRZESIK W., BARTOSZUK M., HABRAT W., 2016, Analysis of mechanical characteristics of face milling process of ti6al4v alloy using experimental and simulation data, Journal of Machine Engineering, 16/3, 58–66.
- [13] TOENSHOFF H.K., DENKENA B., 2013, Basics of cutting and abrasive processes. Berlin, Heidelberg, Springer.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03998a37-96a1-49db-a94d-9040dd728695