PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Polarization dependent high refractive index metamaterial with metallic dielectric grating structure in infrared band

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to the theory of high refractive index of metamaterials, a composite structure of metal dielectric grating was designed to achieve high refractive index in infrared band. Based on the S-parameter inversion algorithm, we extracted the effective permittivity, the effective permeability, and the effective refractive index of the designed metamaterial. By changing the geometric parameters of the composite grating metamaterial structure, the effective refractive index of the designed metamaterial reaches more than 8.0 at the infrared resonance frequency. This is a high refractive index that many natural materials cannot achieve. It is noteworthy that the metamaterial structure has obvious polarization sensitivity. The metamaterial structure has both high refractive index and wideband zero refractive index properties when different polarized light is incident. At the same time, we further investigate the influence of metamaterial geometric parameters on the effective refractive index of metamaterials. Also, we propose a double grating metamaterial structure to obtain more degrees of freedom of metamaterial on the effective refractive index.
Słowa kluczowe
Czasopismo
Rocznik
Strony
441--460
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • University of Shanghai for Science and Technology, No.516 JungGong Road, Shanghai 200093, China
autor
  • College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • School of Entrepreneurship, Hangzhou Dianzi University, Hangzhou 310000, China
autor
  • Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Bibliografia
  • [1] XIAOYONG HE, FENG LIU, FANGTING LIN, WANGZHOU SHI, Tunable terahertz Dirac semimetal metamaterials, Journal of Physics D: Applied Physics 54(23), 2021, article ID 235103, DOI: 10.1088/1361-6463/abe898.
  • [2] JUN PENG, XIAOYONG HE, CHENYUYI SHI, JIN LENG, FANGTING LIN, FENG LIU, HAO ZHANG, WANGZHOU SHI, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 2020, article ID 114309, DOI: 10.1016/j.physe.2020.114309.
  • [3] XIAOYONG HE, FENG LIU, FANGTING LIN, WANGZHOU SHI, Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides, Optics Letters 46(3), 2021, pp. 472–475, DOI: 10.1364/OL.415187.
  • [4] HE X., ZHONG X., LIN F., SHI W., Investigation of graphene assisted tunable terahertz metamaterials absorber, Optical Materials Express 6(2), 2016, pp. 331–342, DOI: 10.1364/OME.6.000331.
  • [5] JUNXIANG HUANG, TAO FU, HAIOU LI, ZHAOYU SHOU, XI GAO, A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface, Chinese Optics Letters 18(1), 2020, article ID 013102, DOI: 10.3788/COL202018.013102.
  • [6] TENG S., ZHANG Q., WANG H., LIU L., LV H., Conversion between polarization states based on metasurface, Photonics Research 7(3), 2019, pp. 246–250, DOI: 10.1364/PRJ.7.000246.
  • [7] AKRAM M.R., DING G., CHEN K., FENG Y., ZHU W., Ultra-thin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Advanced Materials 32(12), 2020, article ID 1907308, DOI: 10.1002/adma.201907308.
  • [8] ZHANG J., WEI X., RUKHLENKO I.D., CHEN H.-T., ZHU W., Electrically tunable metasurface with independent frequency and amplitude modulations, ACS Photonics 7(1), 2020, pp. 265–271, DOI: 10.1021/acsphotonics.9b01532.
  • [9] LIN LI, QUAN YUAN, RUN CHEN, XIUJUAN ZOU, WENBO ZANG, TIANYUE LI, GAIGE ZHENG, SHUMING WANG, ZHENLIN WANG, SHINING ZHU, Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region, Chinese Optics Letters 18(1), 2020, article ID 082401, DOI: 10.3788/COL202018.082401.
  • [10] BO FANG, ZHIYU CAI, YANDONG PENG, CHENXIA LI, ZHI HONG, XUFENG JING, Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials, Journal of Electromagnetic Waves and Applications 33(11), 2019, pp. 1375–1390, DOI: 10.1080/09205071.2019.1608868.
  • [11] FANG B., LI B., PENG Y., LI C., HONG Z., JING X., Polarization‐independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure, Microwave and Optical Technology Letters 61(10), 2019, pp. 2385–2391, DOI: 10.1002/mop.31890.
  • [12] WEIMIN WANG, XUFENG JING, JINGYIN ZHAO,YINYAN LI,YING TIAN, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure, Optica Applicata 47(2), 2017, pp. 183–198, DOI: 10.5277/oa170202.
  • [13] LI JIANG, BO FANG, ZHIGANG YAN, CHENXIA LI, JIPENG FU, HAIYONG GAN, ZHI HONG, XUFENG JING, Improvement of unidirectional scattering characteristics based on multiple nanospheres array, Microwave and Optical Technology Letters 62(6), 2020, pp. 2405–2414, DOI: 10.1002/mop.32328.
  • [14] JUNYU XIAO, RUIWEN XIAO, RONGXUAN ZHANG, ZHIXIONG SHEN, WEI HU, LEI WANG, YANQING LU, Tunable terahertz absorber based on transparent and flexible metamaterial, Chinese Optics Letters 18(9), 2020, article ID 092403, DOI: 10.3788/COL202018.092403.
  • [15] OBULKASIM OLUGH, ZI-LIANG LI, BAI-SONG XIE, Asymmetric pulse effects on pair production in polarized electric fields, High Power Laser Science and Engineering 8(4), 2020, article ID E38, DOI: 10.1017/hpl.2020.36.
  • [16] LEI XIA, YUANZHANG HU, WENYU CHEN, XIAOGUANG LI, Decoupling of the position and angular errors in laser pointing with a neural network method, High Power Laser Science and Engineering 8(3), 2020, article ID E28, DOI: 10.1017/hpl.2020.29.
  • [17] HORNUNG J., ZOBUS Y., BOLLER P., BRABETZ C., EISENBARTH U., KÜHL T., MAJOR ZS., OHLAND J.B., ZEPF M., ZIELBAUER B., BAGNOUD V., Enhancement of the laser-driven proton source at PHELIX, High Power Laser Science and Engineering 8(2), 2020, article ID E24, DOI: 10.1017/hpl.2020.23.
  • [18] FEI DING, YITING CHEN, BOZHEVOLNYI S.I., Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting, Photonics Research 8(5), 2020, pp. 707–714, DOI: 10.1364/PRJ.386655.
  • [19] XUEQIAN ZHANG, QUAN XU, LINGBO XIA, YANFENG LI, JIANQIANG GU, ZHEN TIAN, CHUNMEI OUYANG, JIAGUANG HAN, WEILI ZHANG, Terahertz surface plasmonic waves: a review, Advanced Photonics 2(1), 2020, article ID 014001, DOI: 10.1117/1.AP.2.1.014001.
  • [20] ZHANG J., ZHANG H., YANG W., CHEN K., WEI X., FENG Y., JIN R., ZHU W., Dynamic scattering steering with graphene-based coding metamirror, Advanced Optical Materials 8(19), 2020, article ID 2000683, DOI: 10.1002/adom.202000683.
  • [21] BAI X., KONG F., SUN Y., WANG G., QIAN J., LI X., CAO A., HE C., LIANG X., JIN R., ZHU W., High-efficiency transmissive programmable metasurface for multimode OAM generation, Advanced Optical Materials 8(17), 2020, article ID 2000570, DOI: 10.1002/adom.202000570.
  • [22] JING X., GUI X., ZHOU P., HONG Z., Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter, Journal of Lightwave Technology 36(12), 2018, pp. 2322–2327, DOI: 10.1109/JLT.2018.2808339.
  • [23] XIA R., JING X., GUI X., TIAN Y., HONG Z., Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Optical Materials Express 7(3), 2017, pp. 977–988, DOI: 10.1364/OME.7.000977.
  • [24] AKRAM M.R., MEHMOOD M.Q., BAI X., JIN R., PREMARATNE M., ZHU W., High efficiency ultrathin transmissive metasurfaces, Advanced Optical Materials 7(11), 2019, article ID 1801628, DOI: 10.1002/adom.201801628.
  • [25] AKRAM M.R., BAI X., JIN R., VANDENBOSCH G.A.E., PREMARATNE M., ZHU W., Photon spin Hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves, IEEE Transactions on Antennas and Propagation 67(7), 2019, pp. 4650–4658, DOI: 10.1109/TAP.2019.2905777.
  • [26] ZHAO J., JING X., WANG W., TIAN Y., ZHU D., SHI G., Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region, Optics & Laser Technology 95, 2017, pp. 56–62, DOI: 10.1016/j.optlastec.2017.04.001.
  • [27] TIAN Y., JING X., GAN H., LI C., HONG Z., Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces, Frontiers of Physics 15, 2020, article ID 62502, DOI: 10.1007/s11467-020-1013-1.
  • [28] FU Y., FEI Y., DONG D., LIU Y., Photonic spin Hall effect in PT symmetric metamaterials, Frontiers of Physics 14, 2019, article ID 62601, DOI: 10.1007/s11467-019-0938-8.
  • [29] FU Y., TAO J., SONG A., LIU Y., XU Y., Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings, Frontiers of Physics 15, 2020, article ID 52502, DOI: 10.1007/s11467-020-0968-2.
  • [30] SHEN Z., YANG H., LIU X., HUANG X., XIANG T., WU J., CHEN W., Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response, Frontiers of Physics 15, 2020, article ID 12601, DOI: 10.1007/s11467-019-0928-x.
  • [31] LI J., JIN R., GENG J., LIANG X., WANG K., PREMARATNE M., ZHU W., Design of a broadband metasurface Luneburg lens for full-angle operation, IEEE Transactions on Antennas and Propagation 67(4), 2019, pp. 2442–2451, DOI: 10.1109/TAP.2018.2889006.
  • [32] LU X., ZENG X., LV H., HAN Y., MOU Z., LIU C., WANG S., TENG S., Polarization controllable plasmonic focusing based on nanometer holes, Nanotechnology 31(13), 2020, article ID 135201, DOI: 10.1088/1361-6528/ab62d0.
  • [33] LV H., LU X., HAN Y., MOU Z., ZHOU C., WANG S., TENG S., Metasurface cylindrical vector light generators based on nanometer holes, New Journal of Physics 21, 2019, article ID 123047, DOI: 10.1088/1367-2630/ab5f44.
  • [34] LV H., LU X., HAN Y., MOU Z., TENG S., Multifocal metalens with a controllable intensity ratio, Optics Letters 44(10), 2019, pp. 2518–2521, DOI: 10.1364/OL.44.002518.
  • [35] WANG H., LIU L., ZHOU C., XU J., ZHANG M., TENG S., CAI Y., Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 2019, pp. 317–324, DOI: 10.1515/nanoph-2018-0214.
  • [36] JING X., JIN S., TIAN Y., LIANG P., DONG Q., WANG L., Analysis of the sinusoidal nanopatterning grating structure, Optics & Laser Technology 48, 2013, pp. 160–166, DOI: 10.1016/j.optlastec.2012.10.008.
  • [37] JING X., XU Y., GAN H., HE Y., HONG Z., High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region, IEEE Access 7, 2019, pp. 144945–144956, DOI: 10.1109/ACCESS.2019.2945119.
  • [38] JIANG L., FANG B., YAN Z., FAN J., QI C., LIU J., HE Y., LI C., JING X., GAN H., HONG Z., Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure, Optics & Laser Technology 123, 2020, article ID 105949, DOI: 10.1016/j.optlastec.2019.105949.
  • [39] XIAO S., DRACHEV V., KILDISHEV A., NI X., CHETTIAR U., YUAN H., SHALAEV V., Loss-free and active optical negative-index metamaterials, Nature 466, 2010, pp. 735–738, DOI: 10.1038/nature09278.
  • [40] KARALIS A., LIDORIKIS E., IBANESCU M., JOANNOPOULOS J.D., SOLJAČIĆ M., Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air, Physical Review Letters 95(6), 2005, article ID 063901, DOI: 10.1103/PhysRevLett.95.063901.
  • [41] HE Y., HE S., GAO J., YANG X., Nanoscale metamaterial optical waveguides with ultrahigh refractive indices, Journal of the Optical Society of America B 29(9), 2012, pp. 2559–2566, DOI: 10.1364/JOSAB.29.002559.
  • [42] HADI TEGUH YUDISTIRA, AYODYA PRADHIPTA TENGGARA, VU DAT NGUYEN, TEUN TEUN KIM, FARIZA DIAN PRASETYO, CHOON-GI CHOI, MUHAN CHOI, DOYOUNG BYUN, Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing, Applied Physics Letters 103(21), 2013, article ID 211106, DOI: 10.1063/1.4832197.
  • [43] CAMPBELL T., HIBBINS A.P., SAMBLES J.R., HOOPER I.R., Broadband and low loss high refractive index metamaterials in the microwave regime, Applied Physics Letters 102(9), 2013, article ID 091108, DOI: 10.1063/1.4794088.
  • [44] TAN S., YAN F., SINGH L., CAO W., XU N., HU X., SINGH R., WANG M., ZHANG W., Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling, Optics Express 23(22), 2015, pp. 29222–29230, DOI: 10.1364/OE.23.029222.
  • [45] LIU Z., ZHANG C., SUN S., YI N., GAO Y., SONG Q., XIAO S., Polarization-independent metamaterial with broad ultrahigh refractive index in terahertz region, Optical Materials Express 5(9), 2015, pp. 1949–1953, DOI: 10.1364/OME.5.001949.
  • [46] SIEVENPIPER D.F., YABLONOVITCH E., WINN J.N., FAN S., VILLENEUVE P.R., JOANNOPOULOS J.D., 3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands, Physical Review Letters 80(13), 1998, pp. 2829–2832, DOI: 10.1103/PhysRevLett.80.2829.
  • [47] SHIN J., SHEN J.T., FAN S., Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth, Physical Review Letters 102(9), 2009, article ID 093903, DOI: 10.1103/PhysRevLett.102.093903.
  • [48] CHOI M., LEE S.H., KIM Y., KANG S.B., SHIN J., KWAK M.H., KANG K.Y., LEE Y.H., PARK N., MIN B., A terahertz metamaterial with unnaturally high refractive index, Nature 470, 2011, pp. 369–373, DOI: 10.1038/nature09776.
  • [49] SMITH D.R., VIER D.C., KOSCHNY TH., SOUKOULIS C.M., Electromagnetic parameter retrieval from inhomogeneous metamaterials, Physical Review E 71(3), 2005, article ID 036617, DOI: 10.1103/PhysRevE.71.036617.
  • [50] MIAN JIA, HUIHUI ZHU, DONGSHUO ZHU, WEIMIN WANG, GUOHUA SHI, XUFENG JING, Highly efficient anomalous reflection by ultrathin phase gradient planar meta-surface arrays in near infrared region, Optoelectronics and Advanced Materials – Rapid Communications 11(3–4), 2017, pp. 148–152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0398fe58-21e8-4cf3-b9a5-a4a6c4e275d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.