PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wave propagation and free vibration of FG graphene platelets sandwich curved beam with auxetic core resting on viscoelastic foundation via DQM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel shear and normal deformations theory is presented in this article to illustrate the wave propagation and free vibration of three-layer sandwich curved beams subjected to elevated temperature and moisture environments and resting on viscoelastic foundation. The upper and lower layers are made of metal matrix reinforced with functionally graded (FG) graphene platelets (GPLs). While, the core layer is made of auxetic honeycomb structures. For the layers to be more bonded, the matrix of the face layers and the auxetic layer are both made of aluminum material. The volume fraction of GPLs is varied through the thickness of the face layers according to a layer-wise rule. The modified Halpin–Tsai model is used to describe the effective material properties of the face layers. Four types of GPLs distribution are considered in the present analysis. The differential quadrature method (DQM) is employed to discretize the equations of motion and then converted to a system of algebraic equations. This system can be solved to obtain the natural frequencies of the sandwich curved beams. Whereas, the wave dispersion relations are determined by solving the motion equations analytically. Convergence and comparison examples are presented to adjust and validate the present solution. In addition, comprehensive parametric studies are performed to investigate the effects of the weight fraction of GPLs, temperature, moisture concentrations, core thickness, boundary conditions, and viscoelastic foundation stiffness on the natural frequency, wave frequency and phase velocity of the honeycomb sandwich curved beams.
Rocznik
Strony
art. no. e12, 2022
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
  • Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
  • Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egyp
Bibliografia
  • 1. Sun J, Xu X, Lim CW, Zhou Z, Xiao S. Accurate thermo-electro-mechanical buckling of shear deformable piezoelectric fiber-reinforced composite cylindrical shells. Compos Struct. 2016;141:221–31.
  • 2. Salehi-Khojin A, Jalili N. Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings. Compos Sci Technol. 2008;68(6):1489–501.
  • 3. Tan P, Tong L. Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites. Compos Part A. 2002;33:631–45.
  • 4. Schadler LS, Giannaris SA, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett. 1998;73(26):3842–4.
  • 5. Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl Sci. 2019;1(11):1–15.
  • 6. Taati E, Borjalilou V, Fallah F, Ahmadian MT. On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: perturbation technique. Mech Based Design Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1772087.
  • 7. Civalek O, Avcar M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng Comput. 2020. https://doi.org/10.1007/s00366-020-01168-8.
  • 8. Zhang C, Wang L, Eyvazian A, Khan A, Sebaey TA, Farouk N. Analytical study of the damping vibration behavior of the metal foam nanocomposite plates reinforced with graphene oxide powders in thermal environments. Arch Civil Mech Eng. 2021;21(4):1–23.
  • 9. Sobhy M. 3-D elasticity numerical solution for magneto-hygro-thermal bending of FG graphene/metal circular and annular plates on an elastic medium. Eur J Mech A Solids. 2021;88:104265.
  • 10. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.
  • 11. Tang LC, Wan YJ, Yan D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon. 2013;60:16–27.
  • 12. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75–121.
  • 13. Lin F, Xiang Y, Shen HS. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—a molecular dynamics simulation. Compos Part B Eng. 2017;111:261–9.
  • 14. Avcar M, Hadji L, Civalek O. Natural frequency analysis of sigmoid functionally graded sandwich beams in the frame-work of high order shear deformation theory. Compos Struct. 2021;276:114564.
  • 15. Hadji L, Avcar M. Free Vibration Analysis of FG Porous Sandwich Plates under Various Boundary Conditions. J Appl Comput Mech. 2020. https://doi.org/10.22055/JACM.2020.35328.2628.
  • 16. Polit O, Anant C, Anirudh B, Ganapathi M. Functionally graded graphene reinforced porous nanocomposite curved beams: bending and elastic stability using a higher-order model with thickness stretch effect. Compos B Eng. 2019;166:310–27.
  • 17. Anirudh B, Ganapathi M, Anant C, Polit O. A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling. Compos Struct. 2019;222:110899.
  • 18. Song M, Yang J, Kitipornchai S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos B Eng. 2018;134:106–13.
  • 19. Sobhy M. Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectro-magnetic faces. Compos Struct. 2018;203:844–60.
  • 20. Sobhy M. Differential quadrature method for magneto-hygro-thermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater. 2021;23(5):1662–700.
  • 21. Sobhy M. Buckling and vibration of FG graphene platelets/aluminum sandwich curved nanobeams considering the thickness stretching effect and exposed to a magnetic field. Results Phys. 2020;16:102865.
  • 22. Sobhy M, Abazid MA. Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect. Compos B Eng. 2019;174:106966.
  • 23. Zenkour AM, Sobhy M. Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng Comput. 2021. https://doi.org/10.1007/s00366-020-01224-3.
  • 24. Sobhy M. Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM. Arch Civil Mech Eng. 2021;21:78.
  • 25. Sobhy M, Zenkour AM. Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory. Waves Random Complex Media. 2021;31(5):921–41.
  • 26. Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct. 2018;193:281–94.
  • 27. Song M, Kitipornchai S, Yang J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct. 2017;159:579–88.
  • 28. Yang J, Wu H, Kitipornchai S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct. 2017;161:111–8.
  • 29. Sahmani S, Aghdam MM. Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Intern J Mech Sci. 2017;131:95–106.
  • 30. Sahmani S, Aghdam MM, Rabczuk T. Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos Struct. 2018;186:68–78.
  • 31. Abazid MA, Zenkour AM, Sobhy M. Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory. Mech Based Design Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1769651.
  • 32. Gao X, Yue H, Guo E, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Des. 2016;94:54–60.
  • 33. Li M, Gao H, Liang J, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Character. 2018;140:172–8.
  • 34. Rashad M, Pan F, Yu Z, et al. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog Nat Sci Mater Int. 2015;25:460–70.
  • 35. Dasari BL, Morshed M, Nouri JM, et al. Mechanical properties of graphene oxide reinforced aluminium matrix composites. Compos Part B Eng. 2018;145:136–44.
  • 36. Ashwath P, Jeyapandiarajan P, Joel J, et al. Flexural studies of graphene reinforced aluminium metal matrix composite. Mater Today. 2018;5:13459–63.
  • 37. Radwan AF, Sobhy M. Transient instability analysis of viscoelastic sandwich CNTs-reinforced microplates exposed to 2D magnetic field and hygrothermal conditions. Compos Struct. 2020;245:112349.
  • 38. Sobhy M. Size dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory. Int J Appl Mech. 2020;12(02):2050017.
  • 39. Strek T, Jopek H, Nienartowicz M. Dynamic response of sandwich panels with auxetic cores. Phys Status Solidi B. 2015;7:1540–50.
  • 40. Sobhy M. Stability analysis of smart FG sandwich plates with auxetic core. Int J Appl Mech. 2021. https://doi.org/10.1142/S1758825121500939.
  • 41. Gibson LJ, Ashby MF. Cellular solids: structure and properties. 2nd ed. Cambridge: Cambridge University Press; 1997.
  • 42. Pieklo J, Malysza M, Danko R. Modelling of the material destruction of vertically arranged honeycomb cellular structure. Arch Civil Mech Eng. 2018;18(4):1300–8.
  • 43. Javanmardi A, Ghaedi K, Ibrahim Z, Huang F, Xu P. Development of a new hexagonal honeycomb steel damper. Arch Civil Mech Eng. 2020;20:1–19.
  • 44. Liu Z, Chen H, Xing S. Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load. Arch Civil Mech Eng. 2020;20(3):1–17.
  • 45. Chen A, Davalos JF. A solution including skin effect for stiffness and stress field of sandwich honeycomb core. Int J Solid Struct. 2005;42:2711–39.
  • 46. Davalos JF, Qiao P, Xu XF, et al. Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications. Compos Struct. 2001;52:441–52.
  • 47. Yu SD, Cleghorn WL. Free flexural vibration analysis of symmetric honeycomb panels. J Sound Vib. 2005;284:189–204.
  • 48. Cong PH, Khanh ND, Khoa ND, et al. New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT. Compos Struct. 2018;185:455–65.
  • 49. Qing-Tian D, Zhi-Chun Y. Wave propagation in sandwich panel with auxetic core. J Solid Mech. 2010;2:393–402.
  • 50. Arefi M, Zenkour AM. Influence of magneto-electric environments on sizedependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory. J Sandwich Struct Mater. 2017. https://doi.org/10.1177/1099636217723186.
  • 51. Arefi M, Zenkour AM. Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory. Alex Eng J. 2018;57:2177–85.
  • 52. Arefi M, Zenkour AM. Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam. Acta Mech. 2017;228:3657–74.
  • 53. Ganapathi M, Polit O. A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams. Appl Math Model. 2018;57:121–41.
  • 54. Ganapathi M, Polit O. Dynamic characteristics of curved nano-beams using nonlocal higher-order curved beam theory. Phys E Low Dimens Syst Nanostruct. 2017;91:190–202.
  • 55. Zhang Y, Li Y. Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos Struct. 2019;221:110884.
  • 56. Reddy JN. A simple higher-order theory for laminated composite plates. J Appl Mech. 1984;51:745–52.
  • 57. Touratier M. An efficient standard plate theory. Int J Eng Sci. 1991;29(8):901–16.
  • 58. Karama M, Afaq KS, Mistou S. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int J Solids Struct. 2003;40(6):1525–46.
  • 59. Mashat DS, Zenkour AM. Hygrothermal bending analysis of a sector-shaped annular plate with variable radial thickness. Compos Struct. 2014;113:446–58.
  • 60. Brush DO, Almroth BO. Buckling of bars, plates and shells. New York: McGraw-Hill; 1975.
  • 61. Shu C. Differential quadrature and its application in engineering. Berlin: Springer; 2012.
  • 62. Nateghi A, Salamat-talab M. Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory. Compos Struct. 2013;96:97–110.
  • 63. Leissa A, Qatu M. Vibrations of continuous systems. New York: Mc Graw-Hill Compagnies Inc; 2011.
  • 64. Ganapathi M, Polit O. Dynamic characteristics of curved nano-beams using nonlocal higher-order curved beam theory. Phys E. 2017;91:190–202.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03975294-5e1a-43b7-9f95-4dea207caf1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.