Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a methodology for determining the value of the expansion coefficient of a reconsolidated caving zone in the context of forecasting the rise in underground mine water levels and consequent surface subsidence caused by the process of flooding the closed coal mines. The paper also provides a brief characterisation of analytical predictive models regarding surface subsidence during the process of flooding coal mines. In order to describe the vertical deformation of the reconsolidated porous rock mass in the caving zone, a linear-elastic medium of Biot was utilised. The conducted theoretical calculations demonstrate a high agreement with the results obtained through the identification of the expansion coefficient parameter based on the analysis of in-situ subsidence measurements in Dutch and German mining areas. The proposed methodology was applied to a real case study involving the forecasting of the impact of the flooding process on the underground workings of the German Ibbenbüren mine. The article constitutes a significant contribution to the field of forecasting the rise in underground mine water levels and surface subsidence during the process of flooding closed coal mines. The presented methodology and obtained results can be valuable for researchers, engineers, and decision-makers involved in the planning and management of mining areas.
Rocznik
Tom
Strony
art. no. e148611
Opis fizyczny
Bibliogr 30 poz., rys., tab.
Twórcy
autor
- Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
autor
- Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
autor
- Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
autor
- AGH University of Science and Technology, Krakow, Poland
autor
- Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
Bibliografia
- [1] A. Jakubick, U. Jenk, and R. Kahnt, “Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany,” Environ. Geol., vol. 42, no. 2–3, pp. 222–234, Jun. 2002, doi: 10.1007/s00254-001-0492-9.
- [2] R. Álvarez, A. Ordóńez, E. De Miguel, and C. Loredo, “Prediction of the flooding of a mining reservoir in NW Spain,” J. Environ. Manage., vol. 184, pp. 219–228, Dec. 2016, doi: 10.1016/j.jenvman.2016.09.072.
- [3] A. Vervoort, “Impact of the Hydrogeological Conditions on the Calculated Surface Uplift above Abandoned and Flooded Coal Mines,” Geosciences, vol. 12, no. 12, p. 454, Dec. 2022, doi: 10.3390/geosciences12120454.
- [4] K. Oberste-Brink, “Die Frage der Bodenbewegungen infolge Bergbaus,” Glückauf, Berg- und Hüttenmannische Zeitschrift, vol. 76, no. 18, pp. 249–256, 1940.
- [5] J.J.E. Pöttgens, “Bodemhebung durch ansteigendes Grubenwasser (Uplift as a result of rising mine waters),” The developing science and art of minerals surveying, proceedings VIth International Congress for Mine Surveying, Harrogate, vol. 2, pp. 928–938, 1985, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874530813&partnerID=40&md5=09781aba70c19fa49e9929699faedf96
- [6] A. Sroka and A. Preusse, “On the prediction of flooding-related ground uplift,” in 9th Colloquium on Abandoned Mines. University of Leoben, 2009, pp. 184–196.
- [7] M. Dudek, K. Tajduś, R. Misa, and A. Sroka, “Predicting of land surface uplift caused by the flooding of underground coal mines – A case study,” Int. J. Rock Mech. Min. Sci., vol. 132, p. 104377, Aug. 2020, doi: 10.1016/j.ijrmms.2020.104377.
- [8] J. Zhao and H. Konietzky, “An overview on flooding induced uplift for abandoned coal mines,” Int. J. Rock Mech. Min. Sci., vol. 148, p. 104955, Dec. 2021, doi: 10.1016/j.ijrmms.2021.104955.
- [9] A. Vervoort, “Uplift of the surface of the earth above abandoned coal mines. Part A: Analysis of satellite data related to the movement of the surface,” Int. J. Rock Mech. Min. Sci., vol. 148, p. 104896, Dec. 2021, doi: 10.1016/j.ijrmms.2021.104896.
- [10] M. Dudek, A. Sroka, K. Tajduś, R. Misa, and D. Mrocheń, “Assessment and Duration of the Surface Subsidence after the End of Mining Operations,” Energies, vol. 15, no. 22, p. 8711, Nov. 2022, doi: 10.3390/en15228711.
- [11] A. Sroka, S. Hager, R. Misa, K. Tajduś, and M. Dudek, “The application of Knothe’s theory for the planning of mining exploitation under the threat of discontinuous deformation of the surface and for the prediction of ground surface movements with rising water levels in the post-mining phase,” Gospod. Surowcami Miner. – Miner. Resour. Manag., vol. 37, no. 4, pp. 199–218, 2021, doi: 10.24425/gsm.2021.139737.
- [12] J. Fenk, “An analytical solution for calculating surface rise during flooding of underground mines; Eine analytische Loesung zur Berechnung von Hebungen der Tagesoberflaeche bei Flutung unterirdischer Bergwerksanlagen,” Markscheidewesen, vol. 107, pp. 4220-4422, 2000.
- [13] A. Sroka, “Contribution to the pre-calculation of ground uplift due to rising mine-water levels,” in 5th Colloquium on Abandoned Mines. TU Clausthal, 2005, pp. 453–464.
- [14] J. Geertsma, “Land Subsidence Above Compacting Oil and Gas Reservoirs,” J. Pet. Technol., vol. 25, no. 06, pp. 734–744, Jun. 1973, doi: 10.2118/3730-PA.
- [15] S. Knothe, “A profile equation for a definitely shaped subsidence trough. (Równanie profilu ostatecznie wykształconej niecki osiadania),” Arch. Górnictwa Hut., vol. 1, no. 1, pp. 22–38, 1953. (in Polish)
- [16] A. Kowalski, J. Białek, and T. Rutkowski, “Caulking of Goafs Formed by Cave-in Mining and its Impact on Surface Subsidence in Hard Coal Mines,” Arch. Min. Sci., vol. 66, no. 1, pp. 85–100, 2021, doi: 10.24425/ams.2021.136694.
- [17] S. Ropski, “Stan pełnego i wysokiego zawału oraz strefy osiadania stropu za ścianą na podstawie pomiarów w kopalni Wesoła w pokładzie 329,” in Wybrane zagadnienia z Mechaniki Górotworu. Górnictwo 3., 1966. (in Polish).
- [18] P. Goerke-Mallet, Untersuchungen zu raumbedeutsamen Entwicklungen im Steinkohlenrevier Ibbenbüren unter besonderer Berücksichtigung der Wechselwirkungen von Bergbau und Hydrogeologie. RWTH Aachen, 2000.
- [19] H. Keinhorst and H. Kamp, “Die Bodenbewegungsvorgänge im rechtsrheinischen Gebiet. Der Deutsche Steinkohlenbergbau,” Tech. Sammelw., vol. 2, pp. 410–423, 1956.
- [20] K. Tajduś et al., “Analysis of Mining-Induced Delayed Surface Subsidence,” Minerals, vol. 11, no. 11, p. 1187, Oct. 2021, doi: 10.3390/min11111187.
- [21] J. Zhao, H. Konietzky, M. Herbst, and R. Morgenstern, “Numerical simulation of flooding induced uplift for abandoned coal mines: simulation schemes and parameter sensitivity,” Int. J. Coal Sci. Technol., vol. 8, no. 6, pp. 1238–1249, Dec. 2021, doi: 10.1007/s40789-021-00465-x.
- [22] J. Gustkiewicz, “Volumetric deformations of a rock and its pores,” Arch. Min. Sci, vol. 34, no. 3, pp. 593–609, 1989.
- [23] D. Fabre and J. Gustkiewicz, “Poroelastic properties of limestones and sandstones under hydrostatic conditions,” Int. J. Rock Mech. Min. Sci., vol. 34, no. 1, pp. 127–134, Jan. 1997, doi: 10.1016/S1365-1609(97)80038-X.
- [24] A. Nowakowski and J. Nurkowski, “About Some Problems Related to Determination of the E.G. Biot Coefficient for Rocks,” Arch. Min. Sci., vol. 66, no. 1, pp. 133–150, 2021, doi: 10.24425/ams.2021.136697.
- [25] A. Sroka, K. Tajduś, R. Misa, and M. Dudek, “Gutachten zum zeitlichen Bodenbewegungsverhalten der Tagesoberfläche nach Beendigung des Abbaus für die Stillstandsbereiche West Neu, Lippe, Ost, Auguste Viktoria, Walsum und Lohberg.” Im Auftrag der RAG Aktiengesellschaft in Essen, 2021.
- [26] A. Sroka, F. Schober, and T. Sroka, “General relationships between the selected volume of post-exploitation void and the volume of the subsidence basin, taking into account the time function,” Ochrona Terenów Górniczych, vol. 79, no. 1, pp. 3–9, 1987. (in Polish)
- [27] K. Tunger, “Bodenbewegungen durch Flutung im Steinkohlenrevier Freital/Sachsen,” Markscheidewesen, vol. 116, no. 1, p. 310, 2009.
- [28] A. Preusse and A. Sroka, “Risks posed by rising mine-water levels. Final Report on Research Project FE no. 0760 0000,” Herne, 2015.
- [29] J. Rusek and K. Tajduś, “Direct least squares and derivative-free optimisation techniques for determining mine-induced horizontal ground displacement,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e135840, Nov. 2021, doi: 10.24425/bpasts.2021.135840.
- [30] A. Sroka, K. Tajduś, and R. Misa, “Gutachterliche Stellungnahme zur Auswirkung des Grubenwasseranstiegs im Ostfeld des Bergwerkes Ibbenbüren auf die Tagesoberfläche,” 2017. [On-line] Available at: https://www.rag-anthrazit-ibbenbueren.de/fileadmin/user_upload/rag-anthrazit-ibbenbueren/dokumente/abschlussbetriebsplan_bergwerk_ibbenbueren/anlagen/A15.pdf
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0391ad4b-26f1-4d56-b63b-f5d00a3030e0