PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-Rate Permutation Coding with Unequal Error Protection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Channel coding provides numerous advantages to digital communications. One of such advantages is error correcting capabilities. This, however, comes at the expense of coding rate, which is a function of the codebook’s cardinality |C| or number of coded information bits and the codeword length M. In order to achieve high coding rate, we hereby report a channel coding approach that is capable of error correction under power line communications (PLC) channel conditions, with permutation coding as the coding scheme of choice. The approach adopts the technique of unequal error correction for binary codes, but with the exception that non-binary permutation codes are employed here. As such, certain parts of the information bits are coded with permutation symbols, while transmitting other parts uncoded. Comparisons with other conventional permutation codes are presented, with the proposed scheme exhibiting a relatively competitive performance in terms of symbol error rate.
Twórcy
  • Center for Telecommunications, Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa
  • Center for Telecommunications, Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa
  • Center for Telecommunications, Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa
Bibliografia
  • [1] J. Meng, “Noise analysis of power-line communications using spread-spectrum modulation,” IEEE Trans. Power Del., vol. 22, no. 3, pp. 1470–1476, 2007. [Online]. Available: https://doi.org/10.1109/TPWRD. 2007.900301
  • [2] A. J. H. Vinck and J. Häring, “Coding and modulation for power-line communications,” in Power Line Commun. and Its Applicat. (ISPLC), 2000 4th IEEE Int. Symp., Limerick, Ireland, Apr. 2000, pp. 265–271.
  • [3] V. N. Papilaya, T. Shongwe, A. J. H. Vinck, and H. C. Ferreira, “Selected subcarriers QPSK-OFDM transmission schemes to combat frequency disturbances,” in Power Line Commun. and Its Applicat. (ISPLC), 2012 IEEE Int. Symp., Beijing, China, Mar. 27–30, 2012, pp. 200–205. [Online]. Available: https://doi.org/10.1109/ISPLC.2012.6201327
  • [4] H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer, “Permutation trellis codes,” IEEE Trans. Commun., vol. 53, pp. 1782–1789, Nov. 2005. [Online]. Available: https://doi.org/10.1109/TCOMM.2005.858683
  • [5] M. Zimmermann and K. Doster, “A multi-path signal propagation model for the power line channel in the high frequency range,” in Proc. IEEE Int. Symp. Power Line Commun., Lancaster, UK, 1999, pp. 45–51.
  • [6] M. Tlich, H. Chaouche, A. Zeddam, and P. Pagani, “Novel approach for PLC impulsive noise modelling,” in Power Line Commun. and Its Applicat. (ISPLC), 2009 IEEE Int. Symp., 2009, pp. 20–25. [Online]. Available: https://doi.org/10.1109/ISPLC.2009.4913397
  • [7] M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,” IEEE Trans. Commun., vol. 50, no. 4, pp. 553–559, 2002. [Online]. Available: https://doi.org/10.1109/26.996069
  • [8] K. Ogunyanda, A. D. Familua, T. G. Swart, H. C. Ferreira, and L. Cheng, “Evaluation of mixed permutation codes in PLC channels, using Hamming distance profile,” Telecommun. Syst., vol. 65, no. 1, pp. 1–11, 2016.
  • [9] T. G. Swart and H. C. Ferreira, “Analysis of permutation distance-preserving mappings using graphs,” in Int. Symp. on Commun. Theory and Applicat., 2007.
  • [10] H. C. Ferreira and A. J. H. Vinck, “Interference cancellation with permutation trellis codes,” in Vehicular Technol. Conf., 2000. IEEE-VTS Fall VTC 2000. 52nd, vol. 5, 2000, pp. 2401–2407. [Online]. Available: https://doi.org/10.1109/VETECF.2000.883295
  • [11] J. I. Hall, “Notes on coding theory,” Lecture notes. [Online]. Available: https://users.math.msu.edu/users/halljo/classes/codenotes/mod.pdf
  • [12] P. J. Dukes, “Coding with injections,” Designs, Codes and Cryptography, vol. 65, no. 3, pp. 213–222, 2012.
  • [13] K. A. S. Immink, Codes for Mass Data Storage Systems. The Netherlands: Shannon Foundation Publishers, 1999.
  • [14] J. L. Sonntag, Apparatus and Method for Increasing Density of Run-length Limited Codes without Increasing Error Propagation. US Patent 5, 604, 497, Feb. 1997.
  • [15] P. McEwen, B. Zafar, and K. Fitzpatrick, High Rate Runlength Limited Codes for 8-bit ECC Symbols. US Patent 6, 201, 485, Mar. 2001.
  • [16] A. McClellan, Runlength-limited Code and Method. US Patent 6, 285, 302, Sept. 2001.
  • [17] B. Masnick and J. Wolf, “On linear unequal error protection codes,” IEEE Trans. Inf. Theory, vol. IT-3, no. 4, p. 600–607, 1967. [Online]. Available: https://doi.org/10.1109/TIT.1967.1054054
  • [18] R. Morelos-Zaragoza, T. Kasami, S. Lin, and H. Imai, “On block-coded modulation using unequal error protection codes over Rayleigh-fading channels,” IEEE Trans. Commun., vol. 46, no. 1, pp. 1–4, 1998. [Online]. Available: https://doi.org/10.1109/26.655394
  • [19] R. Morelos-Zaragoza and S. Lin, “Qpsk block-modulation codes for unequal error protection,” IEEE Trans. Inf. Theory, vol. 41, no. 2, pp. 576–581, 1995. [Online]. Available: https://doi.org/10.1109/18.370154
  • [20] R. Morelos-Zaragoza and S. Lin, “On a class of optimal nonbinary linear unequal-error-protection codes for two sets of messages,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 196–200, 1994. [Online]. Available: https://doi.org/10.1109/18.272481
  • [21] S. Haykin, Communication systems, 4th ed. Wiley, 2001.
  • [22] O. O. Ogunyanda, T. Shongwe, and T. G. Swart, “Permutation coding with injections for modified pam system,” Int. J. Electron. Telecommun., vol. 6, no. 3, pp. 399–404, 2020.
  • [23] P. J. Dukes, F. Ihringer, and N. Lindzey, “On the algebraic combinatorics of injections and its applications to injection codes,” IEEE Trans. Inf. Theory, vol. 66, no. 11, pp. 6898–6907, 2020. [Online]. Available: https://doi.org/10.1109/TIT.2020.3005544
  • [24] T. G. Swart and H. C. Ferreira, “Decoding distance-preserving permutation codes for power-line communications,” in IEEE AFRICON 2007, Windhoek, Namibia, 2007, pp. 1–7. [Online]. Available: https://doi.org/10.1109/AFRCON.2007.4401563
  • [25] M. Deza and S. A. Vanstone, “Bounds on permutation arrays,” J. Stat. Planning and Inference, vol. 2, no. 2, pp. 197–209, 1978. [Online]. Available: https://doi.org/10.1016/0378-3758(78)90008-3
  • [26] H. C. Ferreira, H. M. Grove, O. Hooijen, and A. J. H. Vinck, “Power line communication,” Wiley Encyclopedia of Electrical and Electronics Engineering, 2001.
  • [27] A. Patapoutian, J. Stander, P. McEwen, B. Zafer, and J. Fitzpatrick, Rate 32/33 (D=0, K-6) run length limited modulation code having optimized error propagation. US Patent 6, 184, 806, Feb. 2001.
  • [28] K. Ogunyanda, A. D. Familua, T. G. Swart, H. C. Ferreira, and L. Cheng, “Permutation coding with differential quinary phase shift keying for power line communication,” in IEEE PES Innovative Smart Grid Technol. European Conference, Istanbul, Turkey, Oct. 12–15, 2014, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ISGTEurope. 2014.7028891
  • [29] C. Oestges and B. Clerckx, MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design. Academic Press, 2007.
  • [30] L. M. Correira, Mobile Broadband Multimedia Networks: Techniques, Models and Tools for 4G. Academic Press, 2006.
  • [31] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Selected Areas of Commun., vol. 20, no. 6, p. 1211–1226, 2002.
  • [32] MathWorks, “comm.ricianchannel system object,” Accessed May 28, 2021. [Online]. Available: https://www.mathworks.com/help/comm/ref/comm.ricianchannel-system-object.htm
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0388b99e-0d39-4158-b56e-33a0829e6ac9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.