Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The solution of the 1D Sturm-Liouville problem using the Control Volume Method is discussed. The second order linear differential equation with homogeneous boundary conditions is discretized and converted to the system of linear algebraic equations. The matrix associated with this system is tridiagonal and eigenvalues of this system are an approximation of the real eigenvalues of the boundary value problem. The numerical results of the eigenvalues for various cases and the experimental rate of convergence are presented.
Rocznik
Tom
Strony
127--136
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
- Institute of Computer and Information Sciences Czestochowa University of Technology, Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Agarwal R.P., O’Regan D., An Introduction to Ordinary Differential Equations, Springer, New York 2008.
- [2] Atkinson F.V., Discrete and Continuous Boundary Value Problems, Academic Press, New York, London 1964.
- [3] Pryce J.D., Numerical Solution of Sturm-Liouville Problems, Oxford Univ. Press, London 1993.
- [4] Zaitsev V.F., Polyanin A.D., Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, New York 1995.
- [5] Pruess S., Estimating the eigenvalues of Sturm-Liouville problems by approximating the differential equation, SIAM J. Numer. Anal. 1973, 10, 55-68.
- [6] Aceto L., Ghelardoni P., Magherini C., Boundary value methods as an extension of Numerov’s method for Sturm-Liouville eigenvalue estimates, Applied Numerical Mathematics 2009, 59 (7), 1644-1656.
- [7] Amodio P., Settanni G., A matrix method for the solution of Sturm-Liouville problems, Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM) 2011, 6 (1-2), 1-13.
- [8] Ascher U.M., Numerical Methods for Evolutionary Differential Equations, SIAM, 2008.
- [9] Ascher U.M., Mattheij R.M.M., Russell R.D., Numerical Solution of Boundary Value Problems for ODEs, Classics in Applied Mathematics 13, SIAM, Philadelphia 1995.
- [10] Elliott J.F., The characteristic roots of certain real symmetric matrices, Master’s Thesis, University of Tennessee, 1953.
- [11] Gregory R.T., Karney D., A Collection of Matrices for Testing Computational Algorithm, Wiley-Interscience, 1969.
- [12] Akulenko L.D., Nesterov S.V., High-Precision Methods in Eigenvalue Problems and Their Applications (series: Differential and Integral Equations and Their Applications), Chapman and Hall/CRC, 2004.
- [13] Ciesielski M., Blaszczyk T., Numerical solution of non-homogenous fractional oscillator equation in integral form, Journal of Theoretical and Applied Mechanics 2015, 53 (4), 959-968.
- [14] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes: The Art of Scientific Computing (3rd ed.), Cambridge University Press, New York 2007.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0384b494-e797-4491-9fdd-94dc2a8b8b16