PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of hydraulic loading on biofilm properties in a subsurface wastewater infiltration system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a pilot-scale subsurface wastewater infiltration system (SWIS) was deployed to study landscape water treatment. The goal of the study was to investigate the effects of hydraulic loading on pollutant removal and the spatial distribution of biofilm properties in SWIS. Results showed that the efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal degraded as hydraulic loading increased. Furthermore, quantities of the biofilm properties parameter s increased with the hydraulic loading. Polysaccharide and protein levels ranged from 560 to 1110 μg/g filler and 60 to 190 μg/g filler, respectively, at a hydraulic loading of 0.2 m/d. At a hydraulic loading of 0.4 m/d, the quantities of polysaccharide and protein ranged from 1200 to 3300 μg/g filler and 80 to 290 μg/g filler, respectively. Biofilm intensity and biofilm activity per unit weight decreased with the increase in hydraulic loading.
Rocznik
Strony
70--79
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
  • Henan University of Technology, China School of Chemistry and Chemical Engineering
  • Tongji University, China College of Environmental Science and Engineering
autor
  • Tongji University, China College of Environmental Science and Engineering
Bibliografia
  • [1]. Ai, J.Z., Tao, T., Zhao, H.B. & Yong, Z. (20 08). Effect of charcoal media for the treatment of wastewater in a biological filter, Bioinformatics and Biomedical Engineering, 16-18 May 2008, pp. 3527-3530.
  • [2]. Arve, H., Adam, M.P., Lasse, V., Kinga, Á. & Petter, D.J. (2006). A high performance compact filter system treating domestic wastewater, Ecological Engineering, 28, pp. 374-379.
  • [3]. Avinash, M.K., Pravin, D.N., Oza, G.H. & Shankar, H.S. (2009). Treatment of municipal wastewater using laterite-based constructed soil filter, Ecological Engineering, 35, pp.1051-1061.
  • [4]. Beal, C.D., Rassam, D.W., Gardner, E.A., Kirchhof, G. & Menzies, N.W. (2008). Influence of hydraulic loading and effluent flux on surface surcharging in soil absorption systems, Journal of Hydrologic Engineering, 13, 8, pp. 681-692.
  • [5]. Belinda, E.H., Tim, D.F. & Ana, D. (2007). Treatment performance of gravel filter medium: implication for design and application of stormwater infiltration systems, Water Research, 41, pp. 2513-2524.
  • [6]. Belmlont, M.A., Cantellano, E., Thompson, S., Williamson, M., Sanchez, A. & Metcalfe, C.D. (2004). Treatment of domestic wastewater in a pilot scale natural treatment system in central Mexico, Ecological Engineering, 23, pp. 299-311.
  • [7]. Boller, M., Schwager, A. & Eugster, J.V.M. (1993). Dynamic behavior of intermittent buried filters, Water Sci. Technol., 28, 10, pp. 99-107.
  • [8]. Dalahmeh, S.S., Pell, M., Hylander, L.D., Lalander, C., Vinnerås, B. & Jönsson, H. (2014). Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater, Journal of Environmental Management, 13, pp. 338-345.
  • [9]. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances, Analytical Chemistry, 28, pp. 350-356.
  • [10]. Findlay, R.H., King, G.M. & Watling, L. (1989). Efficacy of phospholipid analysis in determining microbial biomass in sediments, Applied and Environmental Microbiology, 55, pp. 2888-2893.
  • [11]. Flemming, H.C. & Wingender, J. (2010). The biofilm matrix, Nature Reviews Microbiology, 8, pp. 623-633.
  • [12]. Huang, L., Gao, X., Liu, M., Du, G., Guo, J.S. & Ntakirutimana, T. (2012). Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water, Ecological Engineering, 46, pp. 98-106.
  • [13]. IWA Special Group on Use of Macrophytes in Water Pollution Control. (2000). Constructed Wetlands for Pollutant Control, Scientific and Technical Report No 8. IWA Publishing, London, England.
  • [14]. Kadlec, R., Ttanner, C., Hally, V. & Gibbs, M. (2005). Nitrogen spiraling in subsurface flow constructed wetlands implication for treatment repines, Ecological Engineering, 25, pp. 365-371.
  • [15]. Lazarova, V. & Manem, J. (1995). Biofilm characterization and activity analysis in water and wastewater treatment, Water Research, 29, 10, pp. 2227-2245.
  • [16]. Lazarova, V., Pierz o,V., Fontvielle, D. & Manem, J. (1994). Integrated approach for biofilm characterisation and biomass activity control, Water Science and Technology, 29, 7, pp. 345-354.
  • [17]. Li, H.B., Li, Y.H., Sun, T.H. & Wang, X. (2012). The use of a subsurface infiltration system in treating campus sewage under variable loading rate, Ecological Engineering, 38, pp. 105-109.
  • [18]. Li, Y.H., Li, H.B., Sun, T.H. & Wang, X. (2011). Effects of hydraulic loading rate on pollutants removal by a deep subsurface wastewater infiltration system, Ecological Engineering, 37, No. 9, pp. 1425-1429.
  • [19]. Liang, Z. & Liu, J.X. (2008). Landfill leachate treatment with a novel process: anaerobic ammonium oxidation (Anammox) combined with soil infiltration system, Journal of Hazardous Materials, 151, pp. 202-212.
  • [20]. Liu, D., Wong, P.T.S. & Dutka, B.J. (1973). Determination of carbohydrate in lake sediment by a modified phenol-sulfuric acid method, Water Research, 7, pp.741-746.
  • [21]. Liu, H. & Fang, H.H.P. (2002). Extraction of extracellular polymeric substances (EPS) of sludges, Journal of Biotechnology, 95, pp. 249-256.
  • [22]. Michael, A.U., William, C.B., Marjorie, E.B. & Song, J. (2007). Nitrogen removal in recirculating sand filter systems with upflow anaerobic components, Journal of Environmental Engineering, 133, pp. 464-470.
  • [23]. Pan, J., Fei, H.X., Song, S.Y., Yuan, F. & Yu, L. (2015). Effects of intermittent aeration on pollutants removal in subsurface wastewater infiltration system, Bioresource Technology, 191, pp. 327-331.
  • [24]. Pan, J., Yu, L., Li, G.Z., Huang, L.L. & Jin, H.T. (2013). Characteristics of microbial populations and enzyme activities in non-shunt and shunt subsurface wastewater infiltration systems during nitrogen removal, Ecological Engineering, 61, pp.127-132.
  • [25]. Ragusa, S., de Zoysa, D.S. & Rengasamy, P. (1994). The effect of microorganisms, salinity and turbidity on hydraulic conductivity of irrigation channel soil, Irrigation Science, 15, pp. 159-166.
  • [26]. Ragusa, S.R., McNevin, D., Qasem, S. & Mitchellb, C. (2004). Indicators of biofilm development and activity in constructed wetlands microcosms, Water Research, 38, pp. 2865-2873.
  • [27]. Rajeb, A.B., Kallali, H., Aissa, N.B., Bouzaiene, O., Jellali, S., Jedidi, N. & Hassen, A. (2009). Soil microbial growth and biofilm expansion assessment under wastewater infiltration percolation treatment process: column experiments, Desalination, 246, pp. 514-525.
  • [28]. Renner, L.D. & Weibel, D .B. (2011). Physicochemical regulation of biofilm formation, MRS Bulletin, 36, pp. 347-355.
  • [29]. Rodgers, M., Healy, M.G. & Mulqueen, J. (2005). Organic carbon removal and nitrification of high strength wastewaters using stratified sand filters, Water Research, 39, 14, pp. 3279-3286.
  • [30]. Sharvelle, S., McLamore, E. & Banks, M.K. (2008). Hydrodynamic characteristics in biotrickling filters as affected by packing material and hydraulic loading rate, Journal of Environmental Engineering, 134, 5, pp. 346-352.
  • [31]. Shatton, J.B., Ward, C., Williams, A. & Weinhouse, S.A. (1983). Microcolorimetric assay of inorganic pyrophosphatase, Analytical Biochemistry, 130, pp. 114-119.
  • [32]. Van, L.H., Wuyts, E. & S champ, N. (1986). Elimination of hydrogen sulphide from odorous air by a wood bark biofilter, Water Research, 20, pp.1471-1476.
  • [33]. Wijeyekoon, S., Mino, T., Satoh, H. & Matsuo, T. (2004). Effects of substrate loading rate on biofilm structure, Water Research, 38, 10, pp. 2479-2488.
  • [34]. Wilson, J., Boutilier, L., Jamieson, R., Havard, P. & Lake, C. (2011). Effects of hydraulic loading rate and filter length on the performance of lateral flow sand filters for on-site wastewater treatment, Journal of Hydrological Engineering, 16, 8, pp. 639-649.
  • [35]. Yang, J., Zhang, L.B., Wu, Y.F., Wang, Y.Y., Li, C. & Liu, W. (2010). Treatment and hydraulic performances of the NiiMi process for landscape water, Journal of Zhejiang University-SCIENCE A, 11, 2, pp. 132-142.
  • [36]. Zhang, L.B., Xing, M.Y., Wu, Y.F., Huang, Z.D. & Yang, J. (2011). Spatial distributions of biofilm properties and flow pattern in NiiMi process, Bioresource Technology, 102, pp.1406-1414.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0381f8a1-8a3f-438a-a5f4-25bcb1a1dceb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.