PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of a Garment Fit Model Using AHP

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Opracowanie modelu dopasowania ubrań z zastosowaniem analitycznego procesu hierarchicznego
Języki publikacji
EN
Abstrakty
EN
Garment fit on a body model is an important factor for designing comfortable, functional and well fitting garments. Nowadays the virtual prototyping of garments provides high potential for design, product development and marketing processes. Previous examinations of garment fit to the body in a real and virtual environment were merely focused on expert evaluation by way of a descriptive comparison of proper and improper areas for fitting. Therefore the problem area in our research was to examine the fit of a skirt on a live model and on virtual models such as parametric and scanned body models in order to propose which virtual human body is the most suitable where garment fit is concerned. The paper also discusses the fit of a skirt on an individual part of the human body with respect to predefined areas. A numerical study with a questionnaire survey database was conducted with the aim of selecting the best model to assess the fit of a skirt to the human body, and the Analytic Hierarchy Process (AHP) was used to evaluate the questionnaire results. The results obtained confirm that the design is most important factor when evaluating a skirt’s fit to the body. Furthermore results confirmed that the hips and abdomen areas were the most important for evaluators when assessing as kirt’s fit to the body.
PL
Dopasowanie ubrania do modelu ciała jest ważnym czynnikiem przy projektowaniu komfortowej, funkcjonalnej i dobrze dopasowanej odzieży. Tworzenie wirtualnych prototypów ubrań otwiera nowe możliwości w projektowaniu, przygotowaniu i wprowadzaniu produktu na rynek. Poprzednie badania dopasowania odzieży do ciała w realnym i wirtualnym środowisku koncentrowały się jedynie na ocenie i porównaniu obszarów prawidłowego i nieprawidłowego dopasowania. W celu uzyskania najbardziej odpowiedniego z punktu widzenia dopasowania odzieży wirtualnego modelu ciała ludzkiego badano i porównywano dopasowanie spódnicy na żywej modelce oraz na wirtualnych modelach. Ponadto omówiono dopasowanie spódnicy do poszczególnych partii ludzkiego ciała w stosunku do wcześniej określonych obszarów. W celu wybrania najlepszego modelu do oceny dopasowania spódnicy do ciała ludzkiego przeprowadzono badania matematyczne z użyciem danych ankietowych ocenionych analitycznym procesem hierarchicznym. Uzyskane wyniki potwierdzają, że projekt jest najważniejszym czynnikiem przy ocenie dopasowania spódnicy do ciała. Ponadto wyniki potwierdziły, że biodra i brzuch są najważniejszymi obszarami dopasowania spódnicy do ciała.
Rocznik
Strony
116--122
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Department Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey
autor
  • Department Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey
autor
  • Department Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey
autor
  • Department of Textiles, Faculty of Natural Science and Engineering, University of Ljubljana, Ljubljana, Slovenia
  • Department of Textile Materials and Design, University of Maribor, Maribor, Slovenia
Bibliografia
  • 1. Fan J, Yu W, Hunter L. Clothing appearance and fit: Science and Technology. 1st ed., Woodhead Publishing Limited in association with The Textile Institute, Cambridge, 2004.
  • 2. www.oxforddictionaries.com (accessed: 7.3.2014).
  • 3. Huck J. Restriction to movement in firefighter protective clothing: evaluation of alternative sleeves and liners. Applied Ergonomics 1991; 2(22): 91-100.
  • 4. Chin-Man C. Fit evaluation within the made-to-measure process. International Journal of Clothing Science and technology 2007; 19(2): 131-144.
  • 5. Huck J, McCullough EA. Performance of Protective Clothing: 2nd Symposium, ASTM STP 989. 1988: 226-235.
  • 6. Rahmand O. Understanding Consumers’ Perceptions and Behaviors: Implications for Denim Jeans Design. Journal of Textile Apparel Technology and Management. 2011; 7(1): 1-16.
  • 7. Bye E, McKinney E. Fit analysis using 3-D and live fit models. International Journal of Clothing and Science Technology 2010; 22(2/3): 88-100.
  • 8. Pilar T, Stjepanovič Z, Jevšnik S. Evaluation of fitting virtual 3D skirt prototypes to body. Tekstilec 2013; 56 (1): 79-83.
  • 9. Jevšnik S, Pilar T, Stjepanović Z, Rudolf A. Virtual prototyping of garments and their fit to the body. DAAAM International Scientific Book, Wiena, 2012.
  • 10. Kozar T, Rudolf A, Jevšnik S, Cupar A, Stjepanovič Z. Adapting human body model posture for the purpose of garment virtual prototyping. In: 5th International Scientific-Professional Conference Textile Science and Economy (TNP 2013), 2013: 133-138.
  • 11. Rudolf A, Kozar T, Jevšnik S, Cupar A, Drstvenšek I, Stjepanovič Z. Research on 3D body model in a sitting position obtained with different 3D scanners. In: The International Istanbul Textile Congress, 2013: 263-269.
  • 12. Gerbertechnology, http://www. gerbertechnology.com (accessed: 7.3.2014).
  • 13. Lectra, http://www.lectra.com (accessed: 7.3.2014).
  • 14. Assystbullmer, http://assystbullmer. co.uk/ (accessed: 7.3.2014).
  • 15. OptiTex, Available from, http://www.optitex.com (accessed:7.3.2014).
  • 16. Stylios GK, Powell J, Cheng L. An investigation into the engineering of the drapability of fabric. Transactions of the Institute of Measurement and Control March 2002; 24: 33-50.
  • 17. Huck J, Maganga O, Kim J. Protective overalls: Evaluation of clothing design and fit’. International Journal of Clothing and Science Technology 1997; 9(1): 45- 61.
  • 18. Shen L, Huck J. Bodice pattern development using somatographic and physical data. International Journal of Clothing and Science Technology 1993; 5(1): 6-16.
  • 19. Likert R. Technique for the measurement of attitudes. Archive of psychology, No. 140, Ed. Science Press, New York, 1932.
  • 20. Cadmodelling Ergonomics s.r.l, http:// www.cadmodelling.it (accessed: 7.3.2014).
  • 21. Lee YA, Lynn Damhorst M, Lee MS, Kozar JM, Martin P. Older Women’s Clothing Fit and Style Concerns and Their Attitudes Toward the Use of 3D Body Scanning. Clothing and Textiles Research Journal 2012; 30(2): 102-118.
  • 22. Stjepanovič Z, Pilar T, Rudolf A, Jevšnik S. 3D virtual prototyping of clothing products. V: Bartkowiak G. (Ed.). Innovations in clothing technology & measurement techniques. 2012: 28-41.
  • 23. Lee J, Nam Y, Hai Cui M, Mi Choi K, Lim Choi Y. Evaluation of 3D Virtual Garment. In: 2nd International Conference on Usability and Internationalization, pp.550-558, 2007.
  • 24. Superdecision, http://www.superdecisions.com/ (accessed: 10.2.2014).
  • 25. Saaty TL. The Analytic Hierarchy Process: planning, priority setting, resource allocation. Ed. Pittsburg: RWS Publications, 1990.ISBN:0962031720.
  • 26. Triantaphyllou E, Mann SH. Using The Analytic Hierarchy Process For Decision Making In Engineering Applications: Some Challenges. International Journal of Industrial Engineering: Applications and Practice 1995: 2(1); 35-44.
  • 27. Tang Y, Sun H, Yao Q, Wang Y. The selection of key technologies by the silicon photovoltaic industry based on the Delphi method and AHP (analytic hierarchy process): Case study of China. Energy 2014; 75(1): 474-482.
  • 28. Lolli F, Ishizaka A, Gamberini R. New AHP-based approaches for multi-criteria inventory classification. International Journal of Production Economics 2014; 156: 62-74.
  • 29. Deng X, Yong H, Deng Y, Sankaran Mahadevan. Supplier selection using AHP methodology extended by D numbers. Expert Systems with Applications 2014; 41 (1): 156-167.
  • 30. Şeker Ş, Özgürler M. Analysis of the Turkish Consumer Electronics Firm using SWOT-AHP Method. Procedia - Social and Behavioral Sciences 2012; 58: 1544-1554.
  • 31. Cebeci U. Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard, Expert Systems with Applications 2009; 36(5): 8900-8909.
  • 32. Zhao J, Li J, Li L. An Analysis on the Target Market of China’s Textile and Garment Export Trade. Procedia Engineering 2011; 15: 4718-4722.
  • 33. Eryuruk SH, Kalaoglu F, Baskak M. Comparison of Logistics and Clothing Sectors for a Logistics Center Site Selection Using AHP. Fibres & Textiles in Eastern Europe 2013; 21, 2(98): 13-18.
  • 34. Eryuruk SH, Kalaoglu F, Baskak M. A Site Selection Model for Establishing a Clothing Logistics Center. Tekstil ve Konfeksiyon 2012; 22(1): 40-47.
  • 35. Demiral AS, Eryuruk SH, Kalaoglu F, Evaluation of the Performance Attributes of Retailers Using the Scor Model and AHP: A Case Study in the Turkish Clothing Industry. Fibers & Textiles in Eastern Europe 2014; 5(107): 14-19.
  • 36. Atos, http://www.capture3d.com/products-ATOS-software.html (accessed: 20. 07. 2012).
  • 37. Blender, http://www.blender.org/download/get-blender/ (accessed: 16. 07. 2012).
  • 38. Rhinoceros: http://www.rhino3d.com/ (accessed: 2011-12-7.NETFABB). Available from: http://www.netfabb. com/. (accessed: 10. 07. 2012).
  • 39. Netfabb Studio Tutorial, Available from: http://wiki.netfabb.com/ (accessed: 3.07.2012).
  • 40. Meshlab, http://meshlab.sourceforge. net/ (accessed: 3. 07. 2012).
  • 41. Minazio PG. J. FAST – Fabric Assurance by Simple Testing. International Journal of Clothing Science and Technology 1995; 7(2/3): 43-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0379efd3-8726-4956-aace-79e1a03052e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.