PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimal ranges determination of morphological parameters of nanopatterned semiconductors quality for solar cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper aims to determine the values of the main morphological characteristics of nanopatterns, which can be considered as the reference for use as surfaces of solar cells. Design/methodology/approach: The article uses an approach based on the definition of reference indicators of nanopatterns for solar cells by analysing the main parameters of solar cells and comparing them with the possible values of morphological parameters. Correlations of pore radius and visible wavelength, porosity and visible range, wavelength of de Broglie, nanopatterned layer thickness and charge carriers diffusion length, etc., are analysed. Compliance verification of morphological characteristics of nanopatterns with the specified criteria was performed on the example of porous silicon layers. Findings: The conducted research allowed to define the basic values of morphological parameters of porous nanopatterns, namely porousness, pore size (effective diameter), the thickness of the porous layer, and form factor. Reference ranges of morphological parameters of nanopatterns formed on the surface of semiconductors for applications in solar cells are established. Research limitations/implications: The article is devoted to the choice of optimal morphological characteristics of porous nanopatterns on the surface of semiconductors for solar cells. However, for solar cells, other types of nanopatterns can also be applied, for which it is also necessary to develop methods for selecting optimal parameters. Moreover, the prospect of research on this topic is to check the intrusion into a certain range of values of real nanopatterns formed on the surface of semiconductors. Practical implications: In the article the methodology allowing to choose optimal values of morphological parameters of nanopatterns for its application for solar cells is considered. Such studies are of great practical importance for the production of high-quality solar cells based on nanopatterned semiconductors. Originality/value: The article for the first time considers the choice of the nanopattern type and the ranges of morphological parameters in terms of quality assurance of the final product - the solar cell. It is determined that it is necessary to take into account such factors as porousness, pore size, thickness of the porous layer and roundness. A range of optimal values is selected for each of the indicators.
Rocznik
Strony
15--24
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Rector, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
Bibliografia
  • [1] R. Valancius, A. Jurelionis, J. Vaiciunas, E. Perednis, V. Suksteris, Analysis of solar thermal systems and future development possibilities in Lithuania, Energetika 62/1-2 (2016) 1-7, DOI: https://doi.org/10.6001/energetika.v62i1-2.3308
  • [2] Z. Li, W. Wang, S. Liao, M. Liu, Y. Qi, C. Ding, C. Li, Integrating a redox flow battery into a Z-scheme water splitting system for enhancing the solar energy conversion efficiency, Energy & Environmental Science 12/2 (2019) 631-639, DOI: https://doi.org/10.1039/C8EE01299G
  • [3] Y. Suchikova, Provision of environmental safety through the use of porous semiconductors for solar energy sector, Eastern-European Journal of Enterprise Technologies 6/5(84) (2016) 26-33, DOI: https://doi.org/10.15587/1729-4061.2016.85848
  • [4] A. Merda, M. Sroka, K. Klimaszewska, G. Golański, Microstructure and mechanical properties of the Sanicro 25 steel after ageing, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 5-11, DOI: https://doi.org/10.5604/01.3001.0012.9651
  • [5] S. Vambol, V. Vambol, Y. Suchikova, I. Bogdanov, O. Kondratenko, Investigation of the porous GaP layers’ chemical composition and the quality of the tests carried out, Journal of Achievements in Materials and Manufacturing Engineering 86/2 (2018) 49-60 DOI: https://doi.org/10.5604/01.3001.0011.8236
  • [6] X. Xu, K. Vignarooban, B. Xu, K. Hsu, A. M. Kannan, Prospects and problems of concentrating solar power technologies for power generation in the desert regions, Renewable and Sustainable Energy Reviews 53 (2016) 1106-1131, DOI: https://doi.org/10.1016i.rser.2015.09.015
  • [7] H. Sun, Q. Zhi, Y. Wang, Q. Yao, J. Su, China’s solar photovoltaic industry development: The status quo, problems and approaches, Applied Energy 118 (2014) 221-230, DOI: https://doi.org/10.1016/j.apenergy.2013.12.032
  • [8] M.A. Eltawil, Z. Zhao, Grid-connected photovoltaic power systems: Technical and potential problems - A review, Renewable and Sustainable Energy Reviews 14/1 (2010) 112-129, DOI: https://doi.Org/1a1016/i.iser.2009J7.015
  • [9] C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, Z. Hu, Photovoltaic and solar power forecasting for smart grid energy management, CSEE Journal of Power and Energy Systems 1/4 (2015) 38-46, DOI: https://doi.org/10.17775/CSEEJPES.2015.00046
  • [10] A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S.W. Glunz, n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation, Solar Energy Materials and Solar Cells 173 (2017) 96-105, DOI: https://doi.org/10.1016/j.solmat.2017.05.042
  • [11] P. Spinelli, V.E. Ferry, J. van de Groep, M. van Lare, M.A. Verschuuren, R.E.I. Schropp, A. Polman, Plasmonic light trapping in thin-film Si solar cells, Journal of Optics 14/2 (2012) 024002, DOI: https://doi.org/10.1088/2040-8978/14/2/024002
  • [12] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, S. Igari, Thin-film poly-Si solar cells on glass substrate fabricated at low temperature, Applied Physics A 69/2 (1999) 179-185, DOI: https://doi.org/10.1007/s003390050988
  • [13] S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells, Journal of Applied Physics 101/9 (2007) 093105, DOI: https://doi.org/10.1063/1.2734885
  • [14] H. Fujiwara, M. Kondo, Impact of epitaxial growth at the heterointerface of a-Si: Hc-Si solar cells, Applied Physics Letters 90/1 (2007) 013503, DOI: https://doi.org/10.1063Z1.2426900
  • [15] R.B. Bergmann, Crystalline Si thin-film solar cells: a review, Applied Physics A 69/2 (1999) 187-194, DOI: https://doi.org/10.1007/s003390050989
  • [16] M. Kubon, E. Boehmer, F. Siebke, B. Rech, C. Beneking, H. Wagner, Solution of the ZnO/p contact problem in a-Si: H solar cells, Solar Energy Materials and Solar Cells 41 (1996) 485-492, DOI: https://doi.org/10.1016/0927-0248(95)00126-3
  • [17] A.G. Aberle, Overview on SiN surface passivation of crystalline silicon solar cells, Solar Energy Materials and Solar Cells 65/1-4 (2001) 239-248, DOI: https://doi.org/10.1016/S0927-0248(00)00099-4
  • [18] J. Muller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in Silicon thin film solar cells, Solar Energy 77/6 (2004) 917-930, DOI: https://doi.org/10.1016/j.solener.2004.03.015
  • [19] W. Matysiak, T. Tański, W. Smok, Electro spinning of PAN and composite PAN-GO nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 18-26, DOI: https://doi.org/10.5604/01.3001.0012.9653
  • [20] S.Y. Lien, D.S. Wuu, W.C. Yeh, J.C. Liu, Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique, Solar Energy Materials and Solar Cells 90/16 (2006) 2710¬2719,
  • DOI: https://doi.org/10.1016/j.solmat.2006.04.001
  • [21] S. Strehlke, S. Bastide, J. Guillet, C. Levy-Clement, Design of porous silicon antireflection coatings for silicon solar cells, Materials Science and Engineering: B 69 (2000) 81-86, DOI: https://doi.org/10.1016/S0921-5107(99)00272-X
  • [22] V. Naumann, D. Lausch, A. Hahnel, J. Bauer, O. Breitenstein, A. Graff, Explanation of potential- induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells, Solar Energy Materials and Solar Cells 120 (2014) 383-389, DOI: https://doi.org/10.1016/j.solmat.2013.06.015
  • [23] Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of type anion of electrolit on morphology porous InP obtained by electrochemical etching, Journal of Nano- and Electronic Physics 1/4 (2009) 111-118.
  • [24] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, H. Lopatina, N. Tsybuliak, Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide, Eastern-European Journal of Enterprise Technologies 6/5(90) (2017) 22-31, DOI: https://doi.org/10.15587/1729-4061.2017.118725
  • [25] Y.A. Suchikova, Porous indium phosphide: preparation and properties, in: M. Aliofkhazraei, A.S.H. Makhlouf (Eds.), Handbook of Nanoelectrochemistry: Electro-chemical Synthesis Methods, Properties, and Characte- rization Techniques, Springer, Cham, 2016, 283-305, DOI: https://doi.org/10.1007/978-3-319-15266-0 28
  • [26] C. Tsai, K.-H. Li, J. Sarathy, S. Shih, J.C. Campbell, B.K. Hance, J.M. White, Thermal treatment studies of the photoluminescence intensity of porous silicon, Applied Physics Letters 59/22 (1991) 2814-2816, DOI: https://doi.org/10.1063/1.105869
  • [27] D. Kim, J. Kang, T. Wan, H.G. Ryu, J.M. Zuidema, J. Joo, Two-Photon in vivo imaging with porous silicon nanoparticles, Advanced Materials 29/39 (2017) 1703309, DOI: https://doi.org/10.1002/adma.201703309
  • [28] O. Syshchyk, V.A. Skryshevsky, O.O. Soldatkin, A.P. Soldatkin, Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals, Biosensors and Bioelectronics 66 (2015) 89-94, DOI: https://doi.org/10.1016/j.bios.2014.10.075
  • [29] E. Kayahan, Porous silicon based humidity sensor, Acta Physica Polonica A 127/4 (2015) 1397-1399, DOI: https://doi.org/10.12693/APhysPolA.127.1397
  • [30] M. Aouassa, L. Hassayoun, L. Favre, A. Ronda, I. Berbezier, Optimization of structural and optical properties of nanoporous silicon substrate for thin layer transfer application, Journal of Materials Science: Materials in Electronics 30/3 (2019) 2585-2591, DOI: https://doi.org/10.1007/s10854-018-0533-8
  • [31] J.H. Petermann, D. Zielke, J. Schmidt, F. Haase, E.G. Rojas, R. Brendel, 19%-efficient and 43 pm-thick crystalline Si solar cell from layer transfer using porous silicon, Progress in Photovoltaics: Research and Applications 20/1 (2012) 1-5, DOI: https://doi.org/10.1002/pip.1129
  • [32] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, O. Kondratenko, O. Hurenko, S. Onishchenko, Research into regularities of pore formation on the surface of semiconductors, Eastern-European Journal of Enterprise Technologies 3/5(87) (2017) 37-44, DOI: https://doi.org/10.15587/1729-4061.2017.104039
  • [33] Y.A. Suchikova, V.V. Kidalov, A.A. Konovalenko, G.A. Sukach, Blue shift of photoluminescence spectrum of porous InP, ECS Transactions 25/24 (2010) 59-64, DOI: https://doi.org/10.1149Z1.3316113
  • [34] Y.O. Suchikova, Sulfide Passivation of Indium Phosphide Porous Surfaces, Journal of Nano- and Electronic Physics 9/1 (2017) 1006-1-1006-6, DOI: http://dx.doi.org/10.21272/jnep.9(1).01006
  • [35] F. Horikiri, H. Ohta, N. Asai, Y. Narita, T. Yoshida, T. Mishima, Excellent potential of photo-electro- chemical etching for fabricating high-aspect-ratio deep trenches in gallium nitride, Applied Physics Express 11/9 (2018) 091001, DOI: https://doi.org/10.5604/01.3001.0012.9651
  • [36] J. Mullerova, E. Scholtz, J. Duriśova, E. Pinmk, M. Solanska, D. Pudiś, Angle-and polarization resolved antireflection properties of black silicon prepared by electrochemical etching supported by external electric field, Applied Surface Science 461 (2018) 182-189, DOI: https://doi.org/10.1016/j.apsusc.2018. 05.179
  • [37] S. Matsumoto, M. Toguchi, K. Takeda, T. Narita, T. Kach, T. Sato, Effects of a photo-assisted electro- chemical etching process removing dry-etching damage in GaN, Japanese Journal of Applied Physics, 57/12 (2018) 121001, DOI: https://doi.org/10.7567/JJAP.57.121001
  • [38] G.H.A. Abrenica, M.V. Lebedev, H. Le, A. Hajduk, M. Fingerle, T. Mayer, Unexpected Pyramid Texturization of n-Type Ge (100) via Electrochemical Etching: Bridging Surface Chemistry and Morphology, Solid State Phenomena 282 (2018) 94-98, DOI: https://doi.org/10.4028/www.scientific.net/SSP.282.94
  • [39] J. Jacobson, G. Bjork, I. Chuang, Y. Yamamoto, Photonic de Broglie waves, Physical Review Letters 74/24 (1995) 4835, DOI: https://doi.org/10.1103/PhysRevLett.74.4835
  • [40] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342/6156 (2013) 341-344, DOI: https://doi.org/10.1126/science. 1243982
  • [41] A. Kania, K. Cesarz-Andraczke, J. Odrobiński, Appli-cation of FMEA method for an analysis of selected production process, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 34-40, DOI: https://doi.org/10.5604/01.3001.0012.9655
  • [42] P. Snopiński, Microstructure and strengthening model of Al-3%Mg alloy in a heat treated state subjected to ECAP process, Journal of Achievements in Materials and Manufacturing Engineering 90/1 (2018) 5-10, DOI: https://doi.org/10.5604/01.3001.0012.7970
  • [43] A.S. Zatulovskyi, V.O. Shcheretskyi, A.O. Shche- retskyi, Thermal stability of nanoscale oxides and carbides of W and Zr in Cu-Al-Fe alloy, Journal of Achievements in Materials and Manufacturing Engineering 90/2 (2018) 49-57, DOI: https://doi.org/10.5604/01.3001.0012.8383
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0379a16e-7439-4840-a1ca-246fa5be8fe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.