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Abstract: In this paper, the issue of shape optimization of a column subjected to the 

generalized load with a force directed towards the positive pole (L. Tomski’s load, 

specific load) was considered. Based on the Hamilton’s principle, the differential 

equations of movement and boundary conditions describing the system were 

formulated. Taking into account a kinetic criterion of stability loss and a condition of  

constant total volume, the scope of changes in natural frequency as a function of an 

external load was determined with selected geometrical and physical parameters of the 

loading structure. On the basis of obtained results, values of geometrical parameters of 

individual column segments were determined, at which the maximum critical load value 

was obtained. In order to find the maximum critical force, which is a function of many 

variables, the simulated annealing algorithm was used.  
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1. INTRODUCTION  

The stability of the columns depends not only on the load type of the system or its 

support, but also on the cross-section and the change of this cross-section along the 

length of the column. In the case of constant efforts to minimize the weight of 

mechanical systems and maximize their strength, of great importance is the issue of 

optimization of such systems. Shape optimization issues can be found, among others 

in the works of Drazumeric and Kosel, 2012, Ruta and Szybiński, 2015, Tsiatas, 2010, 

Krużelecki and Barski, 2008, Bochenek and Tajs-Zielińska, 2008, Nikolic and Salinic, 

2017, Szmidla and Jurczyńska, 2015 and Szmidla and Wawszczak, 2008, where the 

application of different algorithms or proprietary solutions are proposed. This article is 

a response to the search for optimal shapes of slender mechanical systems subjected 

to a conservative load. 

 

2. PHYSICAL MODEL 

Figure 1 shows the physical model of the considered column. In the selected case of 

implemented specific load, the direction of the external force P passes through the point 

O1 (a centre of a curvature of load-receiving head) and constant point O (a centre of a 
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curvature of loading head). The column was fixed rigidly on one side (x1 = 0) and 

connected at a free end (xn = l) to the load-receiving head.  

Modelling of the system's variable cross-section takes place by dividing the column into 

segments (indexed i = 1..n) of a circular cross-section, mass per unit length (Ai) and 

flexural stiffness (EJi), described by the length l and diameter di as well as transverse 

displacement Wi(xi,t). Optimization of the shape comes to the selection of the 

diameters of individual segments, at which the maximum critical load value is a function 

of several variables can be obtained: 

),,...,,( 21
n

L
dddfP nmax  . (1) 

 

 
Fig. 1. The physical model of as column under the generalized load with a force directed 

towards the positive pole. Column division into segments 

 

The value of the critical force Pkr of the optimized columns was referenced to the 

stiffness per bending (EJ)p  constant along the length L of a the comparative column: 
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The following assumptions were made: constant total length L, constant volume v, 

constant value of modulus of elasticity E and density of material  of individual segments 

of optimized columns and corresponding comparative (prismatic) columns: 
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Indications of considered columns: 

- CO(Ro
* , r) – optimized column with a stepped flexural stiffness with the parameter of 

the loading head Ro
*  and the parameter of the load-receiving head r, 

- CP(Ro
* , r) –column with a constant flexural stiffness (comparative system) with the 

parameter of the loading head Ro
*  and the parameter of the load-receiving head r . 

  

3. FORMULATION AND SOLUTION OF A BOUNDARY PROBLEM 

Determination of the differential  equations of motion and boundary conditions of the 

analyzed system was carried out using the Hamilton principle (see Tomski and Szmidla, 

2007): 
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where:  - variation operator, t - time.  

The kinetic energy T of the system under consideration is the sum of the kinetic energy 

of the column and the kinetic energy of a concentrated mass m: 
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while Ai is a cross-section of i – th segment of the optimized column. 

The potential energy consists of the bending elasticity energy and the energy coming 

from the external load: 
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where: 
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The geometrical boundary conditions, including the conditions of continuity have the 

form: 
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where:  = 1…(n-1). 

Taking into consideration the variation of the potential energy in the Hamilton principle 

(4), after using the boundary conditions (7) and performing the algebraic 

transformations, the equations of motion of particular segment: 
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and natural boundary conditions: 
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were obtained, where: 1, 1, 1, 1 are coefficients dependent on the geometry of the 

loading stucture (see Tomski and Szmidla, 2007),       EJEJEJPk nn 11
2 ,/   . 

The general solutions of equations (8) have been described by the function (10) using 

the vibration criterion: 

         1 2 3 4cosh cos sinh sini i i i i i i i i i i i i iy x C x C x C x C x       . (10) 

Taking into account solutions in boundary conditions enables determination of the 

vibrations frequency and the critical force of the analyzed system. 

 

4. SIMULATED ANNEALING 

The simulated annealing method is a heuristic algorithm belonging to the class of non-

deterministic algorithms. This method is a modification of a “hill climbing” algorithm The 

operation of the algorithm requires defining four parameters: the initial representation 

of the solution, the generator of random changes in the solution (neighbourhood 

function), the evaluation function (cost) and the " annealing schedule ". The additional 

parameter   called "temperature" is not directly related to variables that are subject to 

optimization, but only controls the operation of the algorithm. The value of the 

parameter   affects only the probability of passing from one point in the search space 

to another (see Michalewicz and Fogel, 2006) and is selected in a manner depending 

on the given optimization issue.  

The core of the algorithm is a procedure called Metropolis (see Michalewicz and Fogel, 

2006) which is used to simulate the annealing process at a given "temperature" . In 

the Metropolis procedure, the number of iterations specified by parameter M is 

performed at the same value of parameter . Then "temperature" is reduced in 

accordance with the adopted "cooling scheme". The number of Mmax iterations in 

subsequent initiation of the Metropolis procedure is increased by a certain value of M. 

In the modified simulated annealing method presented in this work, apart from changing 

the values of  and M, the performance of the neighbourhood function was changed 

along with the change of “temperature” parameter. Another implemented modification 

of the simulated annealing algorithm is a change of the number of segments n made 

together with the change in the values of the mentioned parameters. Detailed 

information on the modifications applied, including the block diagram of the algorithm is 

described in the publication of Szmidla, 2009. 

 

5. RESULTS OF NUMERICAL COMPUTATIONS 

This chapter presents selected results of numerical calculations regarding to the kinetic 

criterion of a stability loss for selected geometrical parameters of loading structure. The 

full range of the results of numerical analyzes was presented in the publication of 

Szmidla, 2009. Taking into account the solution of the boundary issue (10) numerical 

calculations concerning the value of natural frequency  of the column CO(Ro
*  j, r k) 

were carried out and the maximum values of the critical load Pkr of the column were 

determined. The work was limited to determining the character of the changes of the 

first two natural frequencies in the dimensionless form o1, o2 as a function of 
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dimensionless parameter of external load o for selected values of loading structure 

parameters: 
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The calculations were made by dividing the columns up to n=128 segments 

 

 
Fig. 2. Curves on the plane: external load parameter o – the natural frequency parameter o 

(system CO(Ro
*  j, r  0.333)) 

 

 

Fig. 3. Curves on the plane: external load parameter o - the natural frequency parameter o 
(system CO(Ro

*  0.6, r k)) 
 

Figure 2 presents an influence of variable coefficient Ro
*  on the course of eigenvalues 

for selected value of parameter  r.  An influence of changes in the geometry of loading 

head r at a constant value of radius R is represented by the curves of natural frequency 

in Figure 3. Based on the applied kinetic criterion of stability, critical loads of the 

analyzed systems corresponding to the zero value of the basic vibration frequency were 

determined. Depending on the value of the geometric parameters of the heads, the 

slopes of the curves of the basic natural frequency (Figs. 2-3) are negative, positive or 

equal to zero. This allows for the inclusion of optimized and comparative columns under 

the specific load to one of two types of systems: divergent or divergent  pseudo-flutter 

type. 
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Fig. 4 a÷c. Change of the critical load parameter oc as a function of the value of parameter Ro

*    

of the systems: a) CO(Ro
*  j, r  0.5), CP(Ro

*  j, r  0.5), b) CO(Ro
*  j, r  0.666), CP(Ro

*  j, r  0.666), 

c) CO(Ro
*  j, r  0.833), CP(Ro

*  j, r  0.833). 

 

Figures 4a ÷ c show the scope of changes of the parameter of critical load as a 

function of the parameters of the loading and receiving heads. The results of numerical 

calculations were presented for the optimized shape systems (continuous lines) and 

corresponding comparative columns (dashed lines).  

For the considered values of the radius R of loading head, each of the curves of 

critical load changes was characterized by the occurrence of the maximum critical value 

of the load parameter oc. In the case of comparative columns, the extreme value is 

denoted by the parameters Ro
* , r  satisfying the relation: 2 Ro

*  - r =1. 

The percentage increase in the critical load o of the optimized columns with 

variable flexural stiffness in comparison to this load obtained for prismatic column is 

shown in Figures 5a ÷ c, where: 

* *
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oc R j r
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 





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Fig. 5 a÷c. The percentage increase in the critical load o in relation to the parameter Ro

*  :  

a) CO(Ro
*  j, r  0.5), CP(Ro

*  j, r  0.5), b) CO(Ro
*  j, r  0.666), CP(Ro

*  j, r  0.666),  

c) CO(Ro
*  j, r  0.833), CP(Ro

*  j, r  0.833). 
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Fig. 6a÷h. Shapes of the column CO(Ro

*  j, r  0.333) for different values  
of parameter Ro

*   : a) Ro
*  = 0.333, b) Ro

*  = 0.433, c) Ro
*  = 0.533,  

d) Ro
*  = 0.633, e) Ro

*  = 0.733, f) Ro
*  = 0.833, g) Ro

*  = 0.933, h) Ro
*  = 1.0 

 

 

Fig. 7a÷f. Shapes of column CO(Ro
*  0.9, r k) for variable value of parameter r:  

a) r = 0.033, b) r = 0.166, c) r  = 0.333, d) r  = 0.5, e) r  = 0.666, f) r  = 0.833. 
 

Taking into account the division of the columns into n =128 segments, an increase in 

the critical load was achieved by a maximum of 51.74% in the case of the column 

CO(Ro
*  j, r  0.833) (fig. 5c). 

Figures 6÷7 show the shapes of the optimized columns models for selected parameters 

of loading. As a result of numerical calculations according to the  optimization problem, 

a "stepped" shapes of systems were obtained. Due to the significant number of 

segments with respect to the total length L of the columns, the actual shapes were 

approximated and drawn as continuous. The shapes of prismatic (comparative) 

columns are marked with dashed lines. For each of the shapes shown, the value of the 

critical force of the optimized and corresponding prismatic column as well as the 

percentage increase of the critical load parameter were given. 

 

6. CONCLUSION 

The aim of the work was a numerical analysis and shape optimization of a slender 

system subjected to a generalized load with a force directed to the positive pole. The 
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issues of stability and free vibrations were formulated on the basis of the Hamilton’s 

principle. In the scope of optimization problem, the properties of the simulated 

annealing algorithm were used. As part of the research on the dynamic properties of 

the columns, the change in the natural frequency of vibrations as a function of the 

external load was determined. On the basis of the obtained characteristic curves, the 

system under study was classified as a divergent or divergent  pseudoflutter type of 

system. 

As a result of the conducted research, the maximal increase of critical load of the 

system was obtained at the level of 51.74% in comparison with the comparative system 

of the same volume. The determined shapes of nonprismatic columns are characterized 

by the occurrence of narrowings, the position of which depends on the direction of the 

external load. 
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