PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania oporności elektrycznej zbrojonego betonu klasy XD3 z azotanem wapnia i superplastyfikatorami pod kątem korozji zbrojenia powodowanej przez chlorki

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Investigations on the resistivity of XD3 reinforced concrete for chloride ions and corrosion with calcium nitrate inhibitor and superplasticizers
Języki publikacji
PL EN
Abstrakty
PL
W pracy przedstawiono badania zawartości chloru w betonie i proces korozji, w oparciu o pomiary oporu przewodnictwa elektrycznego i potencjału półogniwa próbek betonowych. Te analizy opierały się na doświadczalnych pomiarach próbek w funkcji czasu zanurzenia w 3,5% roztworze NaCl w wodzie, w temperaturze pokojowej, przez 18 miesięcy, zgodnie z europejskimi normami. Przygotowano mieszanki betonowe o różnym składzie, do których dodawano inhibitor, jakim był azotan wapnia i dwa rodzaje superplastyfikatorów. Wyniki doświadczeń pokazały, że po sześciu miesiącach zanurzenia próbki miały dużą zawartość jonów chlorkowych. Próbki C4 z dodatkiem 3% inhibitora i superplastyfikatora w formie Oxydtronu, jak również C3 z tym samym dodatkiem inhibitora i superplastyfikatora MAPEI Dynamon SR 31, wykazały dobrą odporność na korozję, w stosowanym roztworze NaCl. Znalazło to również potwierdzenie w serii pomiarów przewodnictwa elektrycznego i potencjału półogniwa, przeprowadzonych po doświadczalnym okresie 18 miesięcy.
EN
This work presents a study of the total chloride contents in concrete and the corrosion process by testing electrical resistivity and half-cell potential of concrete samples. The analysis was based on an experimental investigation of the samples with the time of immersion in 3.5% mass NaCl aqueous solution at room temperature for 18 months, according to European Standards. For this study, different mixtures of concrete were prepared by adding two types of superplasticizers and calcium nitrate inhibitor, in different concentrations. The results of the Cl- ions test showed that all the samples, after an immersion testing period of six months, contained high concentrations of Cl- ions. Samples C4 with 3% calcium nitrate inhibitor and Oxydtron superplasticizer as well as C3 with 3% calcium nitrate inhibitor and Mapei Dynamon SR 31 superplasticizer, showed good resistance to corrosion, in the tested environment. It was also proved by the results of several sets of measurements of the electrical resistivity and half-cell potentials carried on the concrete test samples, to the end of the 18 months testing period.
Czasopismo
Rocznik
Strony
330--343
Opis fizyczny
Bibliogr. 29 poz., il., tab.
Twórcy
  • Institute of Metallurgy, Faculty of Materials Science and Engineering, University of Miskolc, Hungary
  • Institute of Metallurgy, Faculty of Materials Science and Engineering, University of Miskolc, Hungary
Bibliografia
  • 1. M.L. Rivetti, J.S. Andrade, N.S.Amorim, D.V. Ribeiro, Corrosion Inhibitors for Reinforced Concrete: Corrosion Inhibitors, Principles and Recent Applications, IntechOpen, 2017. http://doi.org/10.5772/intechopen.72772
  • 2. M. Adamu, L. E. Umoru, O.O. Ige, Effect of Calcium Nitrate and Sodium Nitrite on the Rebar Corrosion of Medium Carbon Steel in Seawater and Cassava Fluid. J. Min. Mater. Charact. Eng. 2, 223-229 (2014). http://doi.org/10.4236/jmmce.2014.23027
  • 3. S. A. Abdulsada, É. Fazakas, T. I.Török, Corrosion testing on steel reinforced XD3 concrete samples prepared with a green inhibitor and two different superplasticizers, Mater. Corr. 70, 1262-1272 (2019). https://doi.org/10.1002/maco.201810695
  • 4. S.A. Abbas, T.I. Török, É. Fazakas, Preliminary Corrosion Testing of Steel Rebar Samples in 3.5%NaCl Solution with and without a Green Inhibitor, Építőanyag-Journal of Silicate Based and Composite Materials 70, 48-53 (2018). https://doi.org/10.14382/epitoanyag-jsbcm.2018.10
  • 5. S.A. Abbas, É. Fazakas, T.I. Török, Corrosion studies of steel rebar samples in neutral sodium chloride solution also in presence of a biobased (green) inhibitor, Int. J. Corr. Scale Inhib. 7, 38-47 (2018). http://doi.org/10.17675/2305-6894-2018-7-1-4
  • 6. M.A. Quraishi, D.K. Nayak, R. Kumar, V. Kumar, Corrosion of Reinforced Steel in Concrete and Its Control: An overview, J. Steel Struct. Constr. 3, 1-6 (2017). https://doi:10.4172/2472-0437.1000124
  • 7. S. A. Abdulsada, A.I. Al-Mosawi, A.A. Hadi, Studying the Effect of Eco-addition Inhibitors on Corrosion Resistance of Reinforced Concrete, Bioprocess Engineering, 1, 81-86 (2017). http://doi: 10.11648/j.be.20170103.14
  • 8. H. S. Ryu, S. H. Shin, C. G. Lim, T. W. Kang, S. Lim and H.T. Kim, Evaluation of Corrosion Resistance of Corrosion Inhibitors for Concrete Structures by Electrochemical Testing in Saturated Ca(OH)2 Solutions with NaCl and Na2SO4, Adv. Mater. Sci. Eng. 2019, 8294360 (2019). https://doi.org/10.1155/2019/8294360
  • 9. G.M. Akshatha, B.G. Jagadeesha and H. Pushpa, Effect of Corrosion Inhibitors in Reinforced Concrete, IJIRSET. 4(8) 6794-6801 (2015). https://doi.org/10.15680/IJIRSET.2015.0408013
  • 10. Z. Marta, Effectiveness of Calcium Nitrate as Corrosion Inhibitor in Concrete, Master Thesis, Politecnico Di Milano, School of Industrial and Information Engineering, Department of Chemistry, Materials and Chemical Engineering, 2017.
  • 11. EN 197-1:2011. Cement - Part 1: Composition, specifications and conformity criteria for common cements. CEN, 2011.
  • 12. EN 12620:2013. Aggregates for concrete. CEM 2013.
  • 13. EN ISO 18753:2017, Fine ceramics (advanced ceramics, advanced technical ceramics) - determination of absolute density of ceramic powders. CEN 2017.
  • 14. C. Hall, Water Transport in Brick, Stone and Concrete, ed. W.D. Hoff., London: London : E. & F. N. Spon, 2000.
  • 15. E. P. Kearsley, P. J. Wainwright, Porosity and permeability of foamed concrete, Cem. Concr. Res. 31(5), 805-812 (2001). https://doi.org/10.1016/S0008-8846(01)00490-2
  • 16. EN 13396:2004. Products and systems for the protection and repair of concrete structures. Test methods. Measurement of chloride ion ingress. CEN, 2004..
  • 17. BIS - IS 3025: PART 32, Methods Of Sampling And Test (Physical And Chemical) For Water And Wastewater: Part 32 Chloride, Bureau of Indian Standards, 1988.
  • 18. D.V. Ribeiro, J.A. Labrincha, M.R. Morelli, Effect of red mud addition on the corrosion parameters of reinforced concrete evaluated by electrochemical methods, Revista IBRACON de Estruturas e Materiais, 5(4) (2012) 451-467. http://doi.org/10.1590/S1983-41952012000400004
  • 19. F.K. Matlob, A. Mohammed, H. Nada Flah, Effect of Using Corrosion Inhibitors on Concrete Properties and Their Activity, J. Kerbala Univ. 6(4), 121-139 (2008).
  • 20. P. Russel, Basics of Concrete Repair and Structural Strengthening, electronic document http://www.sca.org.uk/pdf_word/Penrith%202015/Basics%20of%20Concrete%20Repair%20and%20Structural%20Strengthening.pdf
  • 21. Cti Technical Note C2, Chlorides In Concrete, Cti Consultants Pty Ltd, 2004, pp. 1-3 on the web: https://web.archive.org/web/20200310221213/ https://cticonsultants.com.au/
  • 22. H. Justnes, E.C. Nygaard, The Influence of Technical Calcium Nitrate Additions on the Chloride Binding Capacity of Cement and the Rate of Chloride Induced Corrosion of Steel Embedded in Mortars, International conference, Corrosion and corrosion protection of steel in concrete; 1994; Sheffield, Sheffield Academic Press, 491-502.
  • 23. H. Justnes, Calcium nitrate as corrosion inhibitor for reinforced concrete, Innovations and Developments In Concrete Materials And Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 9-11 September 2002, 391-401.
  • 24. R. F. Stratfull, Corrosion Autopsy of a Structurally Unsound Bridge Deck, Highway Research Record 433, Highway Research Board, National Research Council, Washington, DC, 1-11 (1973). (52nd Annual Meeting of the Highway Research Board held in Washington District of Columbia, United States during 22 to 26 January 1973).
  • 25. C. Naish, A. Harker, R.F.A. Carney, Concrete inspection: Interpretation of potential and resistivity measurernents, Proceedings from Corrosion of Reinforcernent in Concrete, Elsevier Applied Science, 314-332 (1990). 3rd International Symposium on Corrosion of Reinforcement in Concrete Construction, Wishaw, England, May 21-24, 1990
  • 26. C. Andrade, C. Alonso, On-Site Measurements of Corrosion Rate of Reinforcements, Const. Build. Mater. 15, 141-145 (2001). https://doi.org/10.1016/S0950-0618(00)00063-5
  • 27. B. Eisener, H. Bohni, ASTM STP 1065, Potential Mapping and Corrosion of Steel in Concrete, ASTM, Philadelphia, 143-156 (1990). http://doi.org/10.1520/STP25021S
  • 28. S. Jefremczuk, Chloride Ingress and Transport in Cracked Concrete, MSc thesis, Mc Gill University, Canada, 2004. http://web.archive.org/web/20200310220834/https://escholarship.mcgill.ca/concern/theses/5712m714x
  • 29. S. Y. Qian, Reinforcing Decay, Canadian Consulting Engineer. http://web.archive.org/web/20200310220958/https://www.canadianconsultingengineer.com/features/reinforcing-decay/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03711997-56a3-44a7-95fa-fe007053bf7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.