PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Insensitive RDX by Suspension Spray Technology and Its Characterization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new insensitive and high energy explosive based on RDX was prepared by suspension spray technology using Estane 5703 as a binder (e-RDX). Scanning electron microscopy was used to characterize the morphology and particle size of the samples. The composite was analyzed by differential scanning calorimetry and X-ray photoelectron spectroscopy. Its impact sensitivity and detonation velocity were determined. For comparison, raw RDX, refined RDX (r-RDX) and solution spray dried RDX/Estane 5703 (e1-RDX) were also tested using these five methods. The SEM results showed that the e-RDX size was 1-3 μm. e1-RDX exhibited a spherical shape with some defects on the surface. The XPS results indicated that Estane 5703 can be successfully coated onto the surface of e-RDX. Compared to raw RDX, the drop height of r-RDX, e1-RDX and e-RDX was increased, being 16.5 cm, 32.9 cm and 58.4 cm, respectively. The activation energy of e-RDX is lower than that of raw RDX, but a little higher than that of e1-RDX. Compared to raw RDX, the detonation velocity of r-RDX, e1-RDX, w-RDX and e-RDX had decreased, being 110 m·s–1, 710 m·s–1, 410 m·s–1 and 210 m·s–1, respectively.
Rocznik
Strony
216--227
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • North University of China, China
autor
  • North University of China, China
autor
  • North University of China, China
autor
  • Southwest University of Science and Technology, China
  • North University of China, China
Bibliografia
  • [1] Jangid, S.K.; Singh, M.K.; Solanki, V.J.; Talawar, M.B.; Nath, T. 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX)-Based Sheet Explosive Formulation with a Hybrid Binder System. Propellants Explos. Pyrotech. 2016, 41(2): 377-382.
  • [2] Kaur, J.; Arya, V.P.; Kaur G.; Lata P. Evaluation of the Thermo-mechanical and Explosive Properties of Bimodal and Hybrid Polymer Bonded Explosive (PBX) Compositions Based on HNS and HMX. Cent. Eur. J. Energ. Mater. 2013, 10(3): 371-391.
  • [3] Elbeih, A.; Mohamed, M.M.; Wafy, T. Sensitivity and Detonation Characteristics of Selected Nitramines Bonded by Sylgard Binder. Propellants Explos. Pyrotech. 2016, 41(6): 1-7.
  • [4] Elbeih, A.; Pachman, J.; Zeman, S.; Vávra, P.; Trzciński, W.A.; Akštein, Z. Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders. J. Energ. Mater. 2012, 30(4): 358-371.
  • [5] Burnham, A.K.; Weese, R.K. Kinetics of Thermal Degradation of Explosive Binders Viton A, Estane, and Kel-F. Thermochim. Acta 2005, 426(1-2): 85-92.
  • [6] Barua, A.; Horie, Y.; Zhou, M. Energy Localization in HMX-Estane Polymerbonded Explosives during Impact Loading. J. Appl. Phys. 2012, 111(5): 399-586.
  • [7] Jia, X.L.; Zhang, Y.P.; Hou, C.H.; Wang, J.Y.; Ren, L.P. Preparation and Characterization of Polymer Bonded Explosive of HMX/TATB at Different Ratios. (in Chinese) Zhongbei Daxue Xuebao 2017, 38(3): 360-363 and 372.
  • [8] Barua, A.; Zhou, M. Computational Analysis of Temperature Rises in Microstructures of HMX-Estane PBXs. Comput. Mech. 2013, 52(1): 151-159.
  • [9] Singh, G.; Prem, F.S.; Soni, P. Studies on Energetic Compounds, Part 28: Thermolysis of HMX and Its Plastic Bonded Explosives Containing Estane. Thermochim. Acta 2003, 399(1): 153-165.
  • [10] Xiao, J.J.; Huang, H.; Li, J.S.; Zhang, H.; Zhu, W.; Xiao, H.M. Computation of Interface Interactions and Mechanical Properties of HMX-based PBX with Estane 5703 from Atomic Simulation. J. Mater. Sci. 2008, 43(17): 5685-5691.
  • [11] Kim, H.; Lagutcheva, A.; Dlott, D.D. Surface and Interface Spectroscopy of High Explosives and Binders: HMX and Estane. Propellants Explos. Pyrotech. 2006, 31(2): 116-123.
  • [12] Barua, A.; Horie, Y.; Zhou, M. Microstructural Level Response of HMX–Estane Polymer-bonded Explosive under Effects of Transient Stress Waves. P. Roy. Soc. A-Math. Phy. 2012, 468(2147): 3725-3744.
  • [13] Wang, Y.; Jiang, W.; Song, X.L.; Deng, G.D.; Li, F.S. Insensitive HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) Nanocrystals Fabricated by High-yield, Low-cost Mechanical Milling. Cent. Eur. J. Energ. Mater. 2013, 10(2): 277-287.
  • [14] Zohari, N.; Keshavarz, M.H.; Seyedsadjadi, S.A. The Advantages and Shortcomings of Using Nano-sized Energetic Materials. Cent. Eur. J. Energ. Mater. 2013, 10(1): 135-147.
  • [15] Pichot, V.; Seve, A.; Berthe, J.E.; Schnell, F.; Spitzer, D. Study of the Elaboration of HMX and HMX Composites by the Spray Flash Evaporation Process. Propellants Explos. Pyrotech. 2017, 42(12): 1-7.
  • [16] Song, X.L.; Wang, Y.; An, C.W.; Guo, X.D. Dependence of Particle Morphology and Size on the Mechanical Sensitivity and Thermal Stability of Octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine. J. Hazard. Mater. 2008, 159(2): 222-229.
  • [17] Kim, J.W.; Shin, M.S.; Kim, J.K.; Kim, H.S.; Koo, K.K. Evaporation Crystallization of RDX by Ultrasonic Spray. Ind. Eng. Chem. Res. 2011, 50(21): 12186-12193.
  • [18] Vijayalakshmi, R.; Radhakrishnan, S.; Rajendra, P.S.; Girish, G.M.; Arun, S.K. Particle Size Management Studies on Spherical 3-Nitro-1,2,4-triazol-5-one. Part. Part. Syst. Char. 2012, 28(3-4): 57-63.
  • [19] Qiu, H.; Stepanov, V.; Stasio, A.R.D; Surapaneni, A.; Lee, W.Y. Investigation of the Crystallization of RDX during Spray Drying. Powder Technol. 2015, 274: 333-337.
  • [20] Alhalaweh, A.; Velaga, S.P. Formation of Cocrystals from Stoichiometric Solutions of Incongruently Saturating Systems by Spray Drying. Cryst. Growth Des. 2010, 10(8): 3302-3305.
  • [21] Shi, X.; Wang, J.; Li, X.; An, C. Preparation and Characterization of HMX/Estane Nanocomposites. Cent. Eur. J. Energ. Mater. 2014, 11(3):433-442.
  • [22] Wang, J.Y.; Li, H.Q.; An, C.W.; Guo, W.J. Preparation and Characterization of Ultrafine CL-20/TNT Cocrystal Explosive by Spray Drying Method. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2015, 11:1103-1106.
  • [23] Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29(11): 1702-1706.
  • [24] Zhang, T.L.; Hu, R.Z.; Xie, Y.; Li, F.P. The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials Using Non-isothermal DSC. Thermochim. Acta 1994, 244: 171-176.
  • [25] Sovizi, M.R.; Hajimirsadeghi, S.S.; Naderizadeh, B. Effect of Particle Size on Thermal Decomposition of Nitrocellulose. J. Hazard. Mater. 2009, 168(2-3): 1134-1139.
  • [26] Lei, Y.C.; Wang, J.Y. Study on Slurry Coating Technique for Preparation of TATB/HMX Based PBX. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2015, 38(4): 59-62.
  • [27] Shen, J.T.; Xu, W.Z.; Wang, J.Y. Xing, J.T. Study on the Reduced Sensitivity of HMX Coated with ACM. (in Chinese) Initiators Pyrotech. 2016, 5: 50-53.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-036e38fd-f79f-40dc-bd3c-6f832caa2ae7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.