Identyfikatory
Warianty tytułu
Wpływ tarcia w strefie styku na zachowanie skór syntetycznych
Języki publikacji
Abstrakty
Upholstery materials during their performance experience biaxial deformations, which are effected by friction in the contact zones: material-to-human skin, material-to-material, and material-to-inner parts of the furniture. The aim of this research was to define the effect of friction in the punch-to-specimen contact zone upon the tearing character and strength of non-perforated and perforated synthetic leathers under biaxial punching. Tests were performed with three different punches. The variation of friction coefficients in the punch-to-leather contact zone was achieved by the application of four different lubricants. Leather samples were investigated on the face (vinyl) and reverse (textile) sides. The results of the investigations confirmed that the maximal punching force Pmax increases with an increase in the punch size. The same tendency is valid in cases where different levels of friction act in the punch-to-specimen contact zone or whether the specimens were punched from both sides. Dependencies exist between area S of the punch-to-specimen contact zone during tearing and the average static μSA and dynamic μDA friction coefficients.
Materiały tapicerskie ulegają odkształceniom, które są skutkiem tarcia w trzech strefach: styku między materiałami obiciowymi a ludzką skórą, styku materiałów obiciowych ze sobą oraz styku materiałów obiciowym z materiałem, z którego wykonane są części wewnętrzne mebla. Celem badań było określenie wpływu tarcia w strefie kontaktu na rozerwanie i wytrzymałość nieprzetworzonych i perforowanych skór syntetycznych. Do badań użyto czterech różnych środków smarujących. Próbki zostały zbadane po dwóch stronach: wierzchniej (winylowej) i spodniej (tekstylnej). Wyniki badań potwierdziły, że maksymalna siła nacisku wzrasta wraz ze wzrostem wielkości perforacji. Podkreślenia wymaga fakt, że parametry statyczne tarcia w porównaniu z dynamicznymi są wyraźnie wyższe od strony wierzchniej.
Czasopismo
Rocznik
Strony
121--128
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
autor
- Faculty of Arts and Creative Technologies, Vilnius University of Applied Sciences, Didlaukio str. 82, Vilnius LT-08303, Lithuania
Bibliografia
- 1. Sureshkumar P S, Thanikaivelan P, Phebe K, Kaliappa K, Jagadeeswaran R and Chandrasekaran B. Investigations on structural, mechanical, and thermal properties of pineapple leaf fiber-based fabrics and cow softy leathers: an approach toward making amalgamated leather products. Journal of Natural Fibers 2012; 9(1): 37-50.
- 2. Tsaknaki V, Fernaeus Y and Schaub M. Leather as a material for crafting interactive and physical artifacts. Research Gate 2014; 05: 5-14.
- 3. Turk M, Ehrmann A and Mahltig B. Water-, oil-, and soil-repellent treatment of textiles, artificial leather, and leather. Journal of the Textile Institute 2014; 106 (6): 1-10.
- 4. Schwarz I G, Kovacevic S and Kos I. Physical-mechanical properties of automotive textile materials. Research Gate 2015; 11.
- 5. Ujevic D, Kovacevic S, Wadsworth L C, Schwarz I and Sajatovic B B. Analysis of artificial leather with textile fabric on the backside. Journal of Textile and Apparel, Technology and Management 2009; 6 (2): 1-9.
- 6. Prestige Sunroofs. Are Perforated Leather Seats Better. Leather Seats and Trims, 2014. http://prestigesunroofs.com.au
- 7. Popely R. What's the difference between perforated leather and regular leather? I'm Just Wondering, September 16, 2012. http://ask.cars.com
- 8. McMullan A and Mealman M. An investigation of automotive seat fabric sound absorption. SAE Technical Paper, 2001; 2011-01-1454: 1-6.
- 9. Vilhena L and Ramalho A. Friction of human skin against different fabrics for medical use. Lubricants 2016; 4 (6): 1-10.
- 10. Derler S, Schrade U and Gerhardt L C. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 2007; 263: 1112-1116.
- 11. Rotaru G M, Pille D, Lehmeier F K, Stampfli R, Scheel-Sailer A, Rossi R M and Derler S. Friction between human skin and medical textiles for decubitus prevention. Tribology International 2013; 65: 91-96.
- 12. Tasron D N, Thurston T J and Carre M J. Frictional behaviour of running sock textiles against plantar skin. Procedia Engineering, 2015; 112: 110-115.
- 13. Bertaux E, Lewandowski M and Derler S. Relationship between friction and tactile properties for woven and knitted fabrics. Textile Research Journal, 2007; 77 (6): 387-396.
- 14. Das A, Kothari V K and Vandana N. A study on frictional characteristics of woven fabrics. Autex Research Journal, 2005; 5 (3): 133-140.
- 15. Takuya S, Tsuneaki Y, Soo K I and Yuji E. Frictional properties of electrospun polyurethane nanofiber web. Tribology Online 2010; 5 (6): 262-265.
- 16. Nachbauer W, Mossner M, Rohm S, Schindelwig K and Hasler M. Kinetic friction of sport fabrics on snow. Lubricants 2016; 4 (7): 1-8.
- 17. Dong Y, Kong J, Mu Ch and Lu X. Materials design towards sport textiles with low-friction and moisture-wicking dual functions. Materials and Design 2015; 88: 82-87.
- 18. Phillipp M. Reduced textile friction for cotton, synthetics and blends: GLIDER by HeiQ. Textile Intelligence Inside 2014: 1-3.
- 19. Jawale S N and Patil U J. Yarn friction and its importance, theory, factors, measurement. The Indian Textile Journal, 2011.
- 20. Gerhardt L C, Lottenbach R, Rossi R M and Derler S. Tribological investigation of a functional medical textile with lubricating drug-delivery finishing. Colloids and Surfaces 2013.
- 21. Strazdienė E, Gutauskas M V, Papreckienė L and Williams J T. The behaviour of textile membranes in punch deformation process. Materials Science (Medžiagotyra) 1997; 5 (2): 50-54.
- 22. Rocher J E, Allaoui S, Hivet G, Blond E. Experimental testing of two three-dimensional (3D)-non crimp fabrics of commingled yarns. 13th Autex World Textile Conference 2013: 1-6.
- 23. Vanleeuw B, Carvelli V, Barburski M, Lomov S V and van Vuure A W. Quasi-unidirectional flax composite reinforcement: deformability and complex shape forming. Composites Science and Technology 2015; 110: 76-86.
- 24. Wu F F, Zhang G A and Wu X F. Extrinsic size effects on performance of Zr-based metallic glass under biaxial loading. Journal of Material Science 2012; 47: 2213-2217.
- 25. Zhang X, Sahraei E and Wang K. Deformation and failure characteristics of four types of lithiumion battery separators. Journal of Power Sources 2016; 327: 693-701.
- 26. DIN EN ISO 8295 (2004 10) Plastics. Film and sheeting. Determination of the coefficient of friction.
- 27. Fontaine S, Marsiquet C and Renner M. Adhesion, roughness and friction characterization on timedependant materials: example with fibrous structures. SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2006; 4: 1948-1953.
- 28. Ezazshahabi N, Latifi M and Tehran M A. Analysis of frictional behavior of woven fabrics by a multi-directional tactile sensing mechanism. Journal of Engineered Fibers and Fabrics 2015; 10 (3): 129-135.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0364cbe6-1f3e-474c-b4d9-cc424866eb89