Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper analyses the impact of tube arrangement in a latent heat thermal energy storage (LHTES) system on the melting rate of phase change material (PCM). Numerical model was created in ANSYS Fluent 2023 R2, considering natural convection, to investigate the PCM melting process in LHTES. To validate the numerical model, a simulation of the PCM melting process around a single tube was conducted, and the obtained results were compared with experimental findings from other researchers. The validation showed good agreement, confirming the model's accuracy. Next, the melting process of PCM in a latent heat thermal energy storage system constructed of 9 tubes arranged inline was examined. The effect of the distance between the axes of the heating tubes and the distance from the axis of the tubes in the lower row to the bottom edge of the LHTES was investigated to understand the impact of these parameters on the melting dynamics of the PCM. The study showed that lowering the tubes in the LHTES improves natural convection in the PCM, thereby accelerating the melting process, especially in the final stage. For the exchanger with lowered tubes, charging times were reduced by up to 53.7%, and the heat flux was more than twice as high compared to the classic inline tube arrangement. Within the tested range of tube distances, increasing the spacing between the tubes in the inline arrangement decreases the average heat flux, whereas for the lowered tube arrangements, increasing the distance between the tubes does not affect the average heat flux. The conclusions drawn from this research can be used to optimize LHTES designs, contributing to the enhanced performance of thermal energy storage systems. These findings are particularly relevant for applications in renewable energy systems, where efficient thermal management is crucial for overall system performance.
Wydawca
Rocznik
Tom
Strony
366--374
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Prague, Czech Republic
Bibliografia
- 1. Ali, H.M., Rehman, T., Arıcı, M., Said, Z., Duraković, B., Mohammed, H. I., Kumar, R., Rathod, M.K., Buyukdagli, O., Teggar, M. Advances in thermal energy storage: Fundamentals and applications. Progress in Energy and Combustion Science 2024, 100, 101109. https://doi.org/10.1016/j.pecs.2023.101109
- 2. Słomczyńska K., Mirek P., Panowski M. Solar Heating for Pit Thermal Energy Storage – Comparison of Solar Thermal and Photovoltaic Systems in TRNSYS 18. Advances in Science and Technology Research Journal 2022, 16(5), 40–51. https:// doi.org/10.12913/22998624/153015
- 3. Szajding, A., Kuta, M., Cebo-Rudnicka, A., Rywotycki, M. Analysis of work of a thermal energy storage with a phase change material (PCM) charged with electric heaters from a photovoltaic installation. International Communications in Heat and Mass Transfer 2023, 140, 106547. https://doi. org/10.1016/j.icheatmasstransfer.2022.106547
- 4. Togun, H., Sultan, H. S., Mohammed, H. I., Sadeq, A. M., Biswas, N., Hasan, H. A., Homod, R. Z., Abdulkadhim, A. H., Yaseen, Z. M., Talebiza-dehsardari, P. A critical review on phase change materials (PCM) based heat exchanger: Different hybrid techniques for the enhancement. Journal of Energy Storage 2024, 79, 109840. https://doi. org/10.1016/j.est.2023.109840
- 5. Anish, R., Mariappan, V., Suresh, S., Joybari, M. M., Abdulateef, A. M. Experimental investigation on the energy storage/discharge performance of xylitol in a compact spiral coil heat exchanger. International Journal of Thermal Sciences 2021, 159, 106633. https://doi.org/10.1016/j.ijthermalsci.2020.106633
- 6. Lin, W., Ling, Z., Zhang, Z., Fang, X. Experimental and numerical investigation of sebacic acid/expanded graphite composite phase change material in a double-spiral coiled heat exchanger. Journal of Energy Storage 2020, 32, 101849. https://doi. org/10.1016/j.est.2020.101849
- 7. Mohamed, S.A., Al-Sulaiman, F.A., Ibrahim, N.I., Zahir, Md. H., Al-Ahmed, A., Saidur, R., Yılbaş, B.S., Sahin, A.Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews 2017, 70, 1072–1089. https://doi.org/10.1016/j.rser.2016.12.012
- 8. Nazir, H., Batool, M., Bolivar Osorio, F.J., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., Inamuddin, Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer 2019, 129, 491–523. https://doi. org/10.1016/j.ijheatmasstransfer.2018.09.126
- 9. Wang, F., Lin, W., Ling, Z., Fang, X.A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance. Solar Energy Materials and Solar Cells 2019, 191, 218–234. https://doi.org/10.1016/j. solmat.2018.11.016
- 10. Pereira da Cunha, J., Eames, P. Thermal Energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy 2016, 177, 227–238. https://doi. org/10.1016/j.apenergy.2016.05.097
- 11. Al-Abidi, A.A., Mat, S., Sopian, K., Sulaiman, M.Y., Mohammad, A.T. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. International Journal of Heat and Mass Transfer 2013, 61, 684–695. https:// doi.org/10.1016/j.ijheatmasstransfer.2013.02.030
- 12. Liu, S., Peng, H., Hu, Z., Ling, X., Huang, J. Solidification performance of a latent heat storageunit with innovative longitudinal triangular fins. International Journal of Heat and Mass Transfer 2019, 138, 667–676. https://doi.org/10.1016/j. ijheatmasstransfer.2019.04.121
- 13. Sciacovelli, A., Gagliardi, F., Verda, V. Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy 2015, 137, 707–715. https://doi.org/10.1016/j. apenergy.2014.07.015
- 14. Pielichowska, K., Pielichowski, K. Phase change materials for thermal energy storage. Progress in Materials Science 2014, 65, 67–123. https://doi. org/10.1016/j.pmatsci.2014.03.005
- 15. Alizadeh, A. Application of Nanoparticles in the Process of Phase Change Paraffin in a Chamber. Advances in Science and Technology Research Journal 2019, 13(3), 113–119. https://doi. org/10.12913/22998624/110372
- 16. Han, L., Zhang, X., Ji, J., Ma, K. Research progres on the influence of nano-additives on phase change materials. Journal of Energy Storage 2022, 55, 105807. https://doi.org/10.1016/j.est.2022.105807
- 17. Wu, Z. G., Zhao, C. Y. Experimental investigations of porous materials in high temperature thermal Energy storage systems. Solar Energy 2011, 85(7), 1371– 1380. https://doi.org/10.1016/j.solener.2011.03.021
- 18. Yu, C., Peng, Q., Liu, X., Cao, P., Yao, F. Role of metal foam on ice storage performance for a cold thermal energy storage (CTES) system. Journal of Energy Storage 2020, 28, 101201. https://doi. org/10.1016/j.est.2020.101201
- 19. Gong, S., Cheng, X., Li, Y., Shi, D., Wang, X. Zhong, H. Enhancement of ceramic foam modified hierarchical Al2O3@expanded graphite on thermal properties of 1-octadecanol phase change materials. Journal of Energy Storage 2019, 26, 101025. https:// doi.org/10.1016/j.est.2019.101025
- 20. Mahdi, J.M., Nsofor, E.C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Applied Energy 2018, 211, 975–986. https://doi.org/10.1016/j. apenergy.2017.11.082
- 21. Mahdi, J.M., Lohrasbi, S., Ganji, D.D., Nsofor, E. C. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex- tube heat exchanger. International Journal of Heat and Mass Transfer 2018, 124, 663–676. https://doi. org/10.1016/j.ijheatmasstransfer.2018.03.095
- 22. Rabienataj Darzi, A.A., Jourabian, M., Farhadi, M. Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus. Energy Conversion and Management 2016, 118, 253–263. https://doi.org/10.1016/j. enconman.2016.04.016
- 23. Nóbrega Cláudia R.E.S., Ismail Kamal A.R., Lino Fátima A.M. Enhancement of ice formation around vertical finned tubes for cold storage applications. International Journal of Refrigeration 2019, 99, 251- 263. https://doi.org/10.1016/j.ijrefrig.2018.12.018
- 24. Jesumathy, S.P., Udayakumar, M., Suresh, S., Jegadheeswaran, S. An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. Journal of the Taiwan Institute of Chemical Engineers 2014, 45(4), 1298–1306. https://doi.org/10.1016/j. jtice.2014.03.007
- 25. Kazemi, M., Hosseini, M.J., Ranjbar, A.A., Bahrampoury, R. Improvement of longitudinal fins configuration in latent heat storage systems. Renewable Energy 2018, 116, 447–457. https://doi. org/10.1016/j.renene.2017.10.006
- 26. Dhaidan, N.S., Khodadadi, J.M. Melting and convection of phase change materials in different shape containers: A review. Renewable and Sustainable Energy Reviews 2015, 43, 449–477. https://doi. org/10.1016/j.rser.2014.11.017
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-035dd71b-f0e3-4884-82bb-bc570217779e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.