Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work deals with the heat analysis of generalized Burgers nanofluid over a stretching sheet. The Rosseland approximation is used to model the non-linear thermal radiation and incorporated non-uniform heat source/sink effect. The governing equations reduced to a set of nonlinear ordinary differential equations under considering the suitable similarity transformations. The obtained ordinary differential equations equations are solved numerically by Runge-Kutta-Fehlberg order method. The effect of important parameters on velocity, temperature and concentration distributions are analyzed and discussed through the graphs. It reveals that temperature increases with the increase of radiation and heat source/sink parameter.
Czasopismo
Rocznik
Tom
Strony
97--122
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wz.
Twórcy
autor
- Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577 451, Shimoga, Karnataka, India
autor
- Department of Mathematics, K.L.E Society’s J.T. College, Gadag 582102, Karnataka, India
autor
- Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577 451, Shimoga, Karnataka, India
Bibliografia
- [1] Gupta P.S., Gupta A.S.: Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng. 55(1977), 1, 744–746.
- [2] Chan C.K., Char M.I.: Heat and mass transfer on a continuous stretching sheet with suction and blowing. J. of Math. Appl. Phys. 135(1998), 568.
- [3] O.D. Makinde, Khan W.A., Khan Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Tran. 62(2013), 526–533.
- [4] Rashidi M.M., Rostami B., Freidoonimehr N., Abbasbandy S.: Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng. J. 5(2014), 3, 901–912.
- [5] Das K.,Sharma R.P., Sarkar A.: Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet. CDE 3(2016), 4, 330–336.
- [6] Ramesh G.K., Gireesha B.J. and Gorla R.S.R.: Boundary layer flow past a stretching sheet with fluid-particle suspension and convective boundary condition. Heat Mass Transfer 51(2015), 8, 1061–1066.
- [7] Ramesh G.K., Gireesha B.J., Gorla R.S.R.: Study on Sakiadis and Blasius flow of Williamson fluid with convective boundary condition. Nonlinear Engineering 4(2015), 4, 215–221.
- [8] Ramesh G.K., Gireesha B.J.: Flow over a stretching sheet in a dusty fluid with radiation effect.J. Heat Transfer ASME 135(2013), 10, 102702(1-6).
- [9] Choi S.U.S., Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Proc. ASME Int. Mech. Eng. Congress and Exposition 66(1995), 99–105.
- [10] Buongiorno J.: Convective transport in nanofluids. J. Heat. Trans. – T.ASME 128(2005), 3, 240–250.
- [11] Khan W.A., Pop I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Tran. 53(2010), 11–12, 2477–2483.
- [12] Alsaedi A., Awais M., Hayat T.: Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions. Commun. Nonlinear Sci. Numer. Simulat. 17(2012), 4210–4223.
- [13] Rahman M.M., Al-Lawatia M.A., Eltayeb I.A., Al-Salti N.: Hydromagnetic slip flow of water based nanofluids past a wedge with convective surface in the presence of heat generation (or) absorption. Int. J. Thermal Sciences 57(2012), 172–182.
- [14] Nandy S.K., Mahapatra T.R.: Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions. Int. J. Heat Mass Tran. 64(2013), 1091–1100.
- [15] Garoosi F., Rohani B., Rashidi M.M.: Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 275(2015), 304–321.
- [16] Abolbasharia M.H., Freidoonimehr N., Nazaria F., Rashidi M.M.: Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Advanced Powder Technol. 26(2015), 2, 542–552.
- [17] Anwar bég O., Rashidi M.M., Akbari M., Hosseini A.: Comparative numerical study of single-phase and two-phase models for bionanofluid transport phenomena. J. Mech. Med. Biol. 14(2014), 1, 1450011. http://dx.doi.org/10.1142/S0219519414500110.
- [18] Rashidi M.M., Nasiri M., Khezerloo M., Laraqid N.: Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J. Magn. Magn. Mater. 401(2016), 1, 159–168.
- [19] Khalili S., Tamimb H., Khalili A., Rashidi M.M.: Unsteady convective heat and mass transfer in pseudoplastic nanofluid over a stretching wall. Adv. Powder Technol. 26(2015), 5, 1319–1326.
- [20] Burgers J.M.: Mechanical considerations-model systems-phenomenological theories of relaxation and of viscosity. In: First Report on Viscosity and Plasticity 2nd Edn. (J.M. Burgers Ed.) Nordemann Publishing Company, New York 1935.
- [21] Rajagopal K.R., Srinivasa A.R.: A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 88(2000), 207–227.
- [22] Lee A.R., Markwick A.H.D.: The mechanical properties of bituminous surfacing materials under constant stress. J.Soc. Chem. Ind. 56(1937), 146–156.
- [23] Tan B.H., Jackson I., Gerald J.D.F.: High-temperature viscoelasticity of finegrained polycrystalline Olivine. Phys. Chem. Miner. 28(2001), 9, 641–664.
- [24] Khan M. and Khan W.A.: Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet. AIP Adv. 5(2015), 107138.
- [25] Hayat T., Asad S., Alsaedi A.: Flow of Burger’s fluid over an inclined stretching sheet with heat and mass transfer. J. Cent. South Univ., 22(2015), 3180–3188.
- [26] Ravindran P., Krishnan J.M., Rajagopal K.R.: A note on the flow of a Burgers fluid in an orthogonal rheometer. Int. J. Eng. Sci. 42(2004), 1973–1985.
- [27] Quintanilla R., Rajagopal K.R.: On Burgers fluids. Math. Meth. Appl. Sci. 29(2006), 2133–2147.
- [28] Fetecau C., Hayat T., Corina Fetecau: Steady-state solutions for some simple flows of generalized Burgers fluids. Int. J. Non-linear Mech. 41(2006), 5, 880–887.
- [29] Fetecauc C., Hayat T., Khan M., Fetecau C.: A note on longitudinal oscillation of a generalized Burgers fluid in a cylindrical domains. J. Non-Newtonian Fluid Mech. 165(2010), 350–361.
- [30] Khan M.: Stokes’ first problem for an MHD Burgers fluid. Commun. Theor. Phys. 59(2013), 99–104.
- [31] Khan M., Malik R., Anjum A.: Exact solutions of MHD second Stokes flow of generalized Burgers fluid. Appl. Math. Mech.-Engl. Ed. 36(2015), 211–224.
- [32] Shehzad S.A., Hayat T., Alsaedi A., Mustafa A.O.: Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: A model for solar energy. Appl. Math. Comput. 248(2014), 273–286.
- [33] Ramesh G.K.,Roopa G.S., Gireesha B.J., Shehzad S.A., Abbasi F.M.: An electro-magneto-hydrodynamic flow Maxwell nanoliquid past a Riga plate: A numerical study. J. Braz. Soc. Mech. Sci. 39(2017), 11, 4547–4554.
- [34] Hayat T., Muhammad T., Alsaedi A., Alhuthali M.S.: Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J. Magn. Magn. Mater. 385(2015), 222–229.
- [35] Ramesh G.K., Prasannakumara B.C., Gireesha B.J., Shehzad S.A., Abbasi F.M.: Three dimensional flow of Maxwell nanofluid past a bidirectional porous stretching surfacewith thermal radiation. Thermal Sci. Eng. Progress 1(2017), 6–14.
- [36] Abbas Z., Sheikh M., Motsa S.S.: Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 95(2016), 12–20.
- [37] Turkyilmazoglu M., Pop I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat . Mass Tran. 59(2013), 167–171.
- [38] Cortell R.: A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl. Math. Comput. 168(2005), 557–566.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-035cb1b1-b626-47ba-8c5e-a25fc4d5a4af