PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Force exerted by gas on material ejected during gas-geodynamic phenomena analysis and experimental verification of theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of natural hazards, including gas-geodynamic phenomena, requires study of the basic physical processes that take place at each stage of an event. This paper focuses on analysing the transport of fragmented rock material during rock and gas outbursts. Our theoretical considerations and experiments have allowed us to specify and verify the significant forces acting on fragmented rock during its transport, thus determining the speed of grains of each grain class in the stream of expanding gas. The above study may serve as a preface to a wide-ranging quantitative and qualitative energy analysis of the movement of material ejected during Gas-geodynamic phenomena.
Rocznik
Strony
491--508
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
  • Strata Mechanics Research Institute of The Polish Academy of Science, 27 Reymonta Str.,30-059 Kraków, Poland
autor
  • Strata Mechanics Research Institute of The Polish Academy of Science, 27 Reymonta Str.,30-059 Kraków, Poland
Bibliografia
  • [1] R.D. Lama, J. Bodziony, Management of outburst in underground coal mines. International Journal of Coal Geology 35 (1-4), 83-115 (1998).
  • [2] D.J. Black, Review of coal and gas outburst in Australian underground coal mines. International Journal of Mining Science and Technology 29 (6), 815-824 (2019).
  • [3] E.Y. Wang, P. Chen, Z.T. Liu, Y.J. Liu, Z.H. Li, X.L. Li, Fine detection technology of gas outburst area based on direct current method in Zhuxianzhuang Coal Mine, China. Safety Science 115, 12-18 (2019). DOI: https://doi.org/10.1016/j.ssci.2019.01.018.
  • [4] Ch. Zhang, E. Wang, J. Xu, S. Peng, A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal. Fuel 287, (2021). DOI: https://doi.org/10.1016/j.fuel.2020.119493.
  • [5] Ch. Fan, S. Li, M. Luo, W. Du, Z. Yang, Coal and gas outburst dynamic system. International Journal of Mining Science and Technology 27 (1), 49-55 (2017). DOI: https://doi.org/10.1016/j.ijmst.2016.11.003.
  • [6] F. An, Y. Yuan, X. Chen, Z. Li, L. Li, Expansion energy of coal gas for the initiation of coal and gas outbursts. Fuel 235, 551-557 (2019). DOI: https://doi.org/10.1016/j.fuel.2018.07.132.
  • [7] N. Skoczylas, A. Pajdak, K. Kozieł, L.T.P. Braga, Methane Emission during Gas and Rock Outburst on the Basis of the Unipore Model. Energies 12 (10), (2019). DOI: https://doi.org/10.3390/en12101999.
  • [8] K. Jin, Y. Cheng, T. Ren, W. Zhao, Q. Tu, J. Dong, Z. Wang, B. Hu, Experimental investigation on the formation and transport mechanism of outburst coal-gas flow: Implications for the role of gas desorption in the development stage of outburst. International Journal of Coal Geology 194, 45-58 (2018).
  • [9] J. Cao, H. Sun, B. Wang, L. Dai, B. Zhao, G. Wen, X. Zhao, A novel large-scale three-dimensional apparatus to study mechanisms of coal and gas outburst. International Journal of Rock Mechanics and Mining Sciences 118, 52-62 (2019).
  • [10] M. Yankun, H. Xueqiu, L. Zhaohua, A unified model with solid-fluid transition for coal and gas outburst and FEMLIP modelling. Tunnelling and Underground Space Technology 99, (2020).
  • [11] T. Majcherczyk, A. Jakubów, Zagrożenia gazodynamiczne w kopalniach Jastrzębskiej Spółki Węglowej SA. Górnictwo i Geoinżynieria 31 (3/1), (2007).
  • [12] J. Topolnicki, M. Wierzbicki, Transport sedymentacyjny mas powyrzutowych. Prace Instytutu Mechaniki Górotworu PAN 18 (3), 67-73 (2016).
  • [13] K. Kozieł, N. Skoczylas, K. Soroko, S. Gola, Gas and Dolomite Outbursts in Ore Mines-Analysis of the Phenomenon and the Energy Balance. Energies 13 (11), (2020). DOI: https://doi.org/10.3390/en13112999.
  • [14] K. Kozieł, J. Topolnicki, N. Skoczylas, The Intensity of Heat Exchange between Rock and Flowing Gas in Terms of Gas-Geodynamic Phenomena. Entropy 23 (5), (2021). DOI: https://doi.org/10.3390/e23050556.
  • [15] M. Kudasik, N. Skoczylas, Balancing the amount and composition of gas contained in the pore space of cupriferous rocks. Environmental Earth Sciences 77 (4), (2018). DOI: https://doi.org/10.1007/s12665-018-7331-8.
  • [16] F.H. Hedlund, Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide. The 4th International Conference on Risk Analysis and Crisis Response (RACR2013), Istanbul, Turkey 2013.
  • [17] F.H. Hedlund, The extreme carbon dioxide outburst at the Menzengraben potash mine 7 July 1953. Safety Science 50, 537-553 (2012).
  • [18] J. Warren-Monday, Gases in Evaporites: Part 1 – Rockbursts and gassy outbursts. Salty Matters, 2016.
  • [19] B.V. Laptev, R.P. Potekhin, Burst Triggering by Zonal Disintegration of Evaporites Soviet Mining Science 24, 238-241 (1989).
  • [20] R. Baltaretu, R. Gaube, A Sudden Outburst of Gas and Rock in Particular Conditions. International Congress on Problems of Sudden Outbursts of Gas and Rock. Leipzig, German Democratic Republic, 1966.
  • [21] http://www.wug.gov.pl/download/209, Wyższy Urząd Górniczy: Zagrożenia wyrzutami skał i gazów, 2005.
  • [22] S.D. Butt, P.K. Frempong, C. Mukherjee, J. Upshamm, Characterization of the permeability and acoustic properties of an outburst-prone sandstone. Journal of Applied Geophysics 58, 1-12 (2006).
  • [23] X.Z. Li, A. Hua A, Prediction and prevention of sandstone-gas outbursts in coal mines. International Journal of Rock Mechanics & Mining Sciences 43, 2-18 (2006).
  • [24] H. Gil, A. Świdziński, Wyrzuty gazów i skał. Politechnika Śląska. Skrypty Uczelniane, Nr 1366, Wyd. II Gliwice, 1988.
  • [25] M. Kudasik, N. Skoczylas, Analyzer for measuring gas contained in the pore space in rocks. Measurement Science and Technology 28 (10), (2017).
  • [26] M. Kudasik, A. Pajdak, N. Skoczylas, The validation process of the method of balancing gas contained in the pore space of rocks via rock comminution. Archives of Mining Sciences 63 (4), 989-1005 (2018).
  • [27] A. Pajdak, K. Godyń, M. Kudasik, T. Murzyn, The use of selected research methods to describe the pore space of dolomite from copper ore mine, Poland. Environmental Earth Sciences 76, (2017).
  • [28] A. Pajdak, M. Kudasik, Structural and textural characteristics of selected copper-bearing rocks as one of the elements aiding in the assessment of gasogeodynamic hazard. Studia Geotechnica et Mechanica 39 (2), 51-59 (2017).
  • [29] H.R. Parzentny, L. Róg, Dependences between certain petrographic, geochemical and technological indicators of coal quality in the limnic series of the upper silesian coal basin (uscb), Poland. Archives of Mining Sciences 65 (3), 665-684 (2020). DOI: https://doi.org/10.24425/ams.2020.134140.
  • [30] A. Walentek, K. Wierzbiński, Influence of Rock Geomechanical Parameters on Increased Longwall Absolute Methane Emission Rate Forecasting Accuracy. Archives of Mining Sciences 65 (3), 641-664 (2020). DOI: https://doi.org/10.24425/ams.2020.134139.
  • [31] K. Oleszko, M. Młynarczuk, L. Sitek, L. Staš, Application of image processing and different types of imaging devices for three-dimensional imaging of coal grains. Engineering Geology 196, 286-292 (2015).
  • [32] X. Gui, H. Xue, R. Gao, X. Zhan, F. Zhao, Study on Structural Performance of Horizontal Axis Wind Turbine with Air Duct for Coal Mine. Energies 15, (2022). DOI: https://doi.org/10.3390/en15010225.
  • [33] P. Jamróz, Rola świadectw wzorcowania przyrządu pomiarowego w kopalnianych pomiarach. Nowoczesne metody zwalczania zagrożeń aerologicznych w podziemnych wyrobiskach górniczych, GIG, Katowice 2015.
  • [34] P. Jamróz, Interaction between the Standard and the Measurement Instrument during the Flow Velocity Sensor Calibration Process. Processes 9, (2021). DOI: https://doi.org/10.3390/pr9101792.
  • [35] P. Wiklak, M. Kulak, M. Lipian, D. Obidowski, Experimental Investigation of the Cooperation of Wind Turbines. Energies 15, (2022). DOI: https://doi.org/10.3390/en15113906.
  • [36] F. Castellani, A. Eltayesh, F. Natili, T. Tocci, M. Becchetti, L. Capponi, D. Astolfi, G. Rossi, Wind Flow Characterisation over a PV Module through URANS Simulations and Wind Tunnel Optical Flow Methods. Energies 14, (2021). DOI: https://doi.org/10.3390/en14206546.
  • [37] T. Uchida, K. Sugitani, Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain. Energies 13, (2020). DOI: https://doi.org/10.3390/en13153896.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-035a5006-b97b-4876-b7bc-87d96b6a0357
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.