Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Metals pollution is often found in the immediate or neighboring areas of industrial or agricultural activities. This situation may significantly affect the environment, such as water, soil, and air pollution. Electrokinetic (EK) treatment is known to have higher efficiency for metals contaminated soil. However, the use of EK treatment is not widely as expected. This study employs EK treatment with different permeable reactive barriers and flushing solutions to remove Cd and Pb from agricultural soil. Soil pH, temperature, water content, electroosmotic flow, electric current, and metal concentration are calculated as responses to the EK treatment. Results showed that the EK treatments were effectively removed the metals from the contaminated soil. On the fifth day of the treatment, EK, which used activated carbon as PRB and citric acid as the chelating agent, removed a significant amount of Cd from the soil. Besides, the treatment using zeolite as PRB and citric agent as chelate can remove more than 90% of Pb after the sixth day of treatment. These results showed that PRB and chelating agents could effectively remove the metals from the contaminated soils.
Wydawca
Rocznik
Tom
Strony
19--27
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
- Environmental Sustainability Research Group, Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Prof. Sudarto Street No. 13, Tembalang, Semarang, 50275, Indonesia
autor
- Environmental Sustainability Research Group, Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Prof. Sudarto Street No. 13, Tembalang, Semarang, 50275, Indonesia
autor
- Master Program, Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Prof. Sudarto Street No.13, Tembalang, Semarang, 50275, Indonesia
autor
- Environmental Engineering Department, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Ganesa Street No. 10, Lebak Siliwangi, Bandung, 40132, Indonesia
autor
- Environmental Engineering Department, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Ganesa Street No. 10, Lebak Siliwangi, Bandung, 40132, Indonesia
autor
- Environmental Management and Engineering Program, College of Vocational Studies of Bogor Agricultural University, Dramaga Avenue, Babakan, Bogor, 16680, Indonesia
autor
- Environmental Management and Engineering Program, College of Vocational Studies of Bogor Agricultural University, Dramaga Avenue, Babakan, Bogor, 16680, Indonesia
Bibliografia
- 1. Arifin Z., Puspitasari R., Miyazaki N. 2012. Heavy Metal Contamination in Indonesian Coastal Marine Ecosystems: A Historical Perspective. Coastal Marine Science, 35(1), 227–233.
- 2. Conrardy J.B., Vaxelaire J., and Olivier J. 2016. Electro-Dewatering of Activated Sludge: Electrical Resistance Analysis. Water Research, 100, 194–200.
- 3. Eroglu N., Emekci M., Athanassiou C.G. 2017. Applications of Natural Zeolites on Agriculture and Food Production. Journal of the Science of Food and Agriculture, 97(11), 3487–3499.
- 4. Fu R., Dongdong W., Xiaoqian X., Wei Z., Yingying G. 2017. Electrokinetic Remediation of Chromium (Cr)-Contaminated Soil with Citric Acid (CA) and Polyaspartic Acid (PASP) as Electrolytes. Chemical Engineering Journal, 316, 601–608.
- 5. Gill R.T., Harbottle M.J., Smith J.W.N., Thornton S.F. 2014. Electrokinetic-Enhanced Bioremediation of Organic Contaminants: A Review of Processes and Environmental Applications. Chemosphere, 107, 31–42.
- 6. Gong Y., Zhao D., Wang Q. 2018. An Overview of Field-Scale Studies on Remediation of Soil Contaminated with Heavy Metals and Metalloids: Technical Progress over the Last Decade. Water Research, 147, 440–60.
- 7. Kamal A.A., Mahmood A.K., Duja S. 2021. Remediation of Clayey Soil Contaminated with Nickel Nitrate Using Enhanced Electro-Kinetics Process and Study the Geotechnical Properties of the Remediated Soil Samples. Materials Today: Proceedings, 42, 2516–2520.
- 8. Komarawidjaja W. 2017. Paparan Limbah Cair Industri Mengandung Logam Berat Pada Lahan Sawah Di Desa Jelegong, Kecamatan Rancaekek, Kabupaten Bandung. Jurnal Teknologi Lingkungan, 18(2), 173.
- 9. Li H., Zheng Y., Yu L., Lin H., Zhang M., Jiao B., Shiau Y.C., Li D. 2021. Efficient Electrokinetic Remediation of Heavy Metals from MSWI Fly Ash Using Approaching Anode Integrated with Permeable Reactive Barrier. Environmental Science and Pollution Research, 28(17), 22156–22169.
- 10. Li X., Yang Z., He X., Liu Y. 2020. Optimization Analysis and Mechanism Exploration on the Removal of Cadmium from Contaminated Soil by Electrokinetic Remediation. Separation and Purification Technology, 250, 117180.
- 11. Mehdinia A., Ahmadifar M., Aziz-Zanjani M.O., Jabbari A., Hashtroudi S.M. 2012. Selective Adsorption of 2,4-Dinitrophenol on Molecularly Imprinted Nanocomposites of Mesoporous Silica SBA-15/Polyaniline. Analyst, 137(18), 4368–4374.
- 12. Mena E., Villaseñor J., Rodrigo M.A., Cañizares P. 2016. Electrokinetic Remediation of Soil Polluted with Insoluble Organics Using Biological Permeable Reactive Barriers: Effect of Periodic Polarity Reversal and Voltage Gradient. Chemical Engineering Journal, 299, 30–36.
- 13. Moghadam M.J., Moayedi H., Mirmohamad S.M., and Hajiannia A. 2016. A Review of Combinations of Electrokinetic Applications. Environmental Geochemistry and Health, 38(6), 1217–1227.
- 14. Nasiri A., Zanjani A.J., Darban A.K. 2020. Application of Enhanced Electrokinetic Approach to Remediate Cr-Contaminated Soil: Effect of Chelating Agents and Permeable Reactive Barrier. Environmental Pollution, 266, 115197
- 15. Peng G., Tian G. 2010. Using Electrode Electrolytes to Enhance Electrokinetic Removal of Heavy Metals from Electroplating Sludge. Chemical Engineering Journal, 165(2), 388–394.
- 16. Priyadi S., Purnama D., Santoso U., Hastuti P. 2013. Profil Plumbum (Pb) Dan Cadmium (Cd) Sebagai Kontaminan Dampak Penggunaan Agrokimia Serta Remediasi Biji Kedelai Menggunakan Swelling Agent Pada Khelasi Dengan Asam Sitrat, 15(1), 45–51.
- 17. Purnamawati F.S., Soeprobowati T.R., Izzati M. 2015. Potential of Chlorella Vulgaris Beijerinck in Laboratory Scale Cd and Pb Heavy Metal Remediation. Bioma, 16(2), 102–113.
- 18. Ramadan B.S., Effendi A.J., Helmy Q. 2018. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil. E3S Web of Conferences, 31, 2–7.
- 19. Siaka I.M., Sahara E., Dharmayoga I.G.A.P.M. 2016. Bioavailabilitas Dan Spesiasi Logam Berat Pb Dan Cd Pada Tanah Pertanian Basah Dan Kering Di Daerah Denpasar. Jurnal Kimia, 9(1), 132–138.
- 20. Silva K.N.O., Paiva S.S.M., Souza F.L., Silva D.R. et al. 2018. Applicability of Electrochemical Technologies for Removing and Monitoring Pb2+ from Soil and Water. Journal of Electroanalytical Chemistry, 816(March), 171–178.
- 21. Wang Y., Li A., Cui C. 2021. Remediation of Heavy Metal-Contaminated Soils by Electrokinetic Technology: Mechanisms and Applicability. Chemosphere, 265, 129071.
- 22. Waqas M., Nizami A.S., Aburlazalza A.S., Barakat M.A., Asam Z.Z., Khattak B., Rashid M.I. 2019. Untapped Potential of Zeolites in Optimization of Food Waste Composting. Journal of Environmental Management, 241, 99–112.
- 23. Wen D., Fu R., Li Q. 2021. Removal of Inorganic Contaminants in Soil by Electrokinetic Remediation Technologies: A Review. Journal of Hazardous Materials, 401, 123345.
- 24. Xie N., Chen Z., Wang H., You C. 2021. Activated Carbon Coupled with Citric Acid in Enhancing the Remediation of Pb-Contaminated Soil by Electrokinetic Method. Journal of Cleaner Production, 308, 127433.
- 25. Xu J.C., Ma Q., Chen C., Wu Q.T., Long X.X. 2020. Cadmium Adsorption Behavior of Porous and Reduced Graphene Oxide and Its Potential for Promoting Cadmium Migration during Soil Electrokinetic Remediation. Chemosphere, 259, 127441.
- 26. Xu Y., Xu X., Hou H., Zhang J., Zhang D., Qian G. 2016. Moisture Content-Affected Electrokinetic Remediation of Cr(VI)-Contaminated Clay by a Hydrocalumite Barrier. Environmental Science and Pollution Research, 23(7), 6517–6523.
- 27. Yin G., Zhu H., Chen Z., Su C., He Z., Chen X., Qiu J., Wang T. 2021. Spatial Distribution and Source Apportionment of Soil Heavy Metals in Pearl River Delta, China. Sustainability (Switzerland), 13(17).
- 28. Zhao S., Fan L., Zhou M., Zhu X., Li X. 2016. Remediation of Copper Contaminated Kaolin by Electrokinetics Coupled with Permeable Reactive Barrier. Procedia Environmental Sciences, 31, 274–279.
- 29. Zhou H., Xu J., Lv S., Liu Z., Liu W. 2020. Removal of Cadmium in Contaminated Kaolin by New-Style Electrokinetic Remediation Using Array Electrodes Coupled with Permeable Reactive Barrier. Separation and Purification Technology, 239(516).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0357636f-a292-432d-8210-b380deed3028