PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy Metal Accumulation in Sediment and Removal Efficiency in the Stabilization Ponds with the Hydrocotyle ranunculoides Filter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heavy metal accumulation in the sediment and removal efficiency in stabilization ponds with Hydrocotyle ranunculoides filter were evaluated. Sediment and water were sampled in June, July and August 2018. The sediment sampling for each lagoon was conducted at three sites forming a composite sample. The water samples were collected in the tributary and effluent pipelines to determine the heavy metal concentration and removal efficiency by Hydrocotyle ranunculoides. The determination of heavy metals was performed with the method of atomic flame absorption spectrophotometry. The mean concentration of heavy metals in the sediment, in a descending order, was: Fe > Zn > Pb > Cu > Cd. The concentrations of these metals ranged from 998.0 to 1365.02, from 488.01 to 600.30, from 88.23 to 95.01, from 1.47 to 1.53 and from 0.01 to 0.13 mg/Kg, respectively. In the four stabilization ponds, the pollution factor values for Cd, Cu and Fe qualified as low pollution factor. While for Zn and Pb, they qualified as moderate pollution factors. The heavy metal removal rates from the water varied by metal.
Rocznik
Strony
72--79
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Universidad Nacional del Centro del Perú, Centro de Investigación de Medicina en Altura y Medio Ambiente, Av. Mariscal Castilla No. 3909-4089, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Centro de Investigación de Medicina en Altura y Medio Ambiente, Av. Mariscal Castilla No. 3909-4089, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Centro de Investigación de Medicina en Altura y Medio Ambiente, Av. Mariscal Castilla No. 3909-4089, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Centro de Investigación de Medicina en Altura y Medio Ambiente, Av. Mariscal Castilla No. 3909-4089, Huancayo, Perú
  • Universidad Continental, Av. San Carlos No. 1980, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Centro de Investigación de Medicina en Altura y Medio Ambiente, Av. Mariscal Castilla No. 3909-4089, Huancayo, Perú
Bibliografia
  • 1. Adhikari, U., Harrigan, T., & Reinhold, D.M. 2015. Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecological Engineering, 78, 6–14. https://doi.org/10.1016/j.ecoleng.2014.05.024
  • 2. Ajah, K.C., Ademiluyi, J., & Nnaji, C.C. 2015. Spatiality, seasonality and ecological risks of heavy metals in the vicinity of a degenerate municipal central dumpsite in Enugu, Nigeria. Journal of Environmental Health Science and Engineering. https://doi.org/10.1186/s40201–015–0168–0
  • 3. Ali, H., Khan, E., & Anwar, M. 2013. Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91, 869–881.
  • 4. Bahaa, S., Al-Baldawi, I., Rasheed, S., & Abdullah, S.R.S. 2019. Biosorption of Heavy Metals from Synthetic Wastewater by Using Macro Algae Collected from Iraqi Marshlands. Journal of Ecological Engineering, 20(11), 18–22. https://doi.org/10.12911/22998993/113415
  • 5. Canadian Council of Ministers of the Environment. 2001. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life – Polychlorinated Dibenzop-Dioxins and Polychlorinated Dibenzofurans (PCDD/Fs). In Canadian Council of Ministers of the Environment (Ed.), Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. (pp. 1–6). Canadian Council of Ministers of the Environment 2001.
  • 6. Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba, G.J., & Naushad, M. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029
  • 7. Castro, C., & Donati, E.R. 2019. Innovative Biomining: Microorganisms and Bioremediation. Heavy Metals in the Environment. https://doi.org/10.1201/ b22013–8
  • 8. de Kwaadsteniet, M., Dobrowsky, P.H., van Deventer, A., Khan, W., & Cloete, T.E. 2013. Domestic Rainwater Harvesting: Microbial and Chemical Water Quality and Point-of-Use Treatment Systems. Water, Air, & Soil Pollution, 224(7), 1629. https://doi.org/10.1007/s11270–013–1629–7
  • 9. Galletti, A., Verlicchi, P., & Ranieri, E. 2010. Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: Contribution of vegetation and filling medium. Science of the Total Environment, 408(21), 5097–5105. https://doi.org/10.1016/j.scitotenv.2010.07.045
  • 10. Gleason, K.M., Valeri, L., Shankar, A.H., Hasan, M.O.S.I., Quamruzzaman, Q., Rodrigues, E.G., … Mazumdar, M. 2016. Stunting is associated with blood lead concentration among Bangladeshi children aged 2–3 years. Environmental Health, 15(1), 103. https://doi.org/10.1186/s12940–016–0190–4
  • 11. Goncharuk, V.V. 2014. Role of Water in Human Life. In Drinking Water (pp. 1–16). Cham: Springer International Publishing. https://doi.org/10.1007/978–3–319–04334–0_1
  • 12. Hadad, H.R., Mufarrege, M. de las M., Di Luca, G.A., & Maine, M.A. 2018. Long-term study of Cr, Ni, Zn, and P distribution in Typha domingensis growing in a constructed wetland. Environmental Science and Pollution Research, 25(18), 18130–18137. https://doi.org/10.1007/s11356–018–2039–6
  • 13. International Atomic Energy Agency, 1999. Reference Sheet for IAEA-SL-1 Trace and miner elements in lake sediments. Retrieved from https://nucleus.iaea.org/rpst/Documents/rs_iaea-sl-1.pdf
  • 14. Joseph, L., Jun, B.M., Flora, J.R.V., Park, C.M., & Yoon, Y. 2019. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198
  • 15. Khan, S., Ahmad, I., Shah, M.T., Rehman, S., & Khaliq, A. 2009. Use of constructed wetland for the removal of heavy metals from industrial wastewater. Journal of Environmental Management, 90(11), 3451–3457. https://doi.org/10.1016/j.jenvman.2009.05.026
  • 16. Leung, H.M., Duzgoren-Aydin, N.S., Au, C.K., Krupanidhi, S., Fung, K.Y., Cheung, K.C., … Tsui, M.T.K. 2017. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environmental Science and Pollution Research International, 24(10), 9079–9088. https://doi.org/10.1007/s11356–016–6756–4
  • 17. Liang, Y., Zhu, H., Bañuelos, G., Yan, B., Zhou, Q., Yu, X., & Cheng, X. 2017. Constructed wetlands for saline wastewater treatment: A review. Ecological Engineering, 98, 275–285. https://doi.org/10.1016/j.ecoleng.2016.11.005
  • 18. Manoj, K., & Padhy, P.K. 2014. Distribution , Enrichment and Ecological Risk Assessment of Six Elements in Bed Sediments of a Tropical River , Chottanagpur Plateau: A Spatial and Temporal Appraisal. Journal of Environmental Protection, 5(November), 1419–1434. https://doi.org/10.4236/jep.2014.514136
  • 19. Módenes, A.N., Thomé, L.P., Palácio, S.M., Trigueros, D.E.G., Oliveira, A.P., & Szymanski, N. 2009. Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata, 150, 316–322. https://doi.org/10.1016/j.cej.2009.01.004
  • 20. Müller, G. 1979. Heavy metals in the sediment of the Rhine–Changes seitt. 1971. Umschan, 79, 778–783.
  • 21. Quispe, R., Soto, M., Ingaruca, E., Bulege, W., & Custodio, M. 2019. Optimization of the Operation of a Municipal Wastewater Treatment Plant with Hydrocotyle ranunculoides. Journal of Ecological Engineering, 20(9), 228–236. https://doi.org/10.12911/22998993/112486
  • 22. Rizzo, P.F., Bres, P.A., Crespo, D.E., Arreghini, S., Serafini, R.J.M., & Fabrizio de Iorio, A.R. 2012. Remediation of feedlot effluents using aquatic plants. Revista de La Facultad de Ciencias Agrarias, 44(2), 47–64.
  • 23. Salamanca, E.J. P., Madera-Parra, C.A., Avila-Williams, C.A., Rengifo-Gallego, A.L., & Ríos, D.A. 2015. Phytoremediation Using Terrestrial Plants. In Phytoremediation (pp. 305–319). Cham: Springer International Publishing. https://doi.org/10.1007/978–3–319–10969–5_25
  • 24. Tomlinson, D.L., Wilson, J.G., Harris, C.R., & Jeffrey, D.W. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters, 33, 566–575.
  • 25. Truu, M., Juhanson, J., & Truu, J. 2009. Microbial biomass, activity and community composition in constructed wetlands. Science of the Total Environment, 407(13), 3958–3971. https://doi.org/10.1016/j.scitotenv.2008.11.036
  • 26. USEPA. (2007). Framework for Metals Risk Assessment. EPA 120/R-07/001. Environmental Protection.
  • 27. Villares, R., Puente, X., & Carballeira, A. 2002. Seasonal variation and background levels of heavy metals in two green seaweeds. Environmental Pollution, 119(1), 79–90. https://doi.org/10.1016/S0269–7491(01)00322–0
  • 28. Vymazal, J., & Krása, P. 2003. Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage. Water Science and Technology, 48(5), 299–306. https://doi.org/10.2166/wst.2003.0336
  • 29. Weiss, J., Hondzo, M., Biesboer, D., & Semmens, M. 2006. International Journal of Phytoremediation Laboratory Study of Heavy Metal Phytoremediation by Three Wetland Macrophytes, (November 2014), 37–41. https://doi.org/10.1080/15226510600846798
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0350eb96-7a0d-4ae6-b6b6-291358b7c9fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.