PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of S-guided CREP methodology for advanced seismic structure enhancing processing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To acquire refined seismic targets, the use of more accurate and more precise methods of seismic signal processing is crucial. Novel seismic processing approach is even more important in case of the complex geology of mountainous regions (e.g., Carpathians, Carpathian Foredeep) where sub-vertical layering of varying rock complex can be found, but also in case of old seismic data reprocessing (especially when the signal-to-noise ratio and general quality are low). Regardless of many research papers and significant progress in seismic processing techniques, a properly processed and interpreted seismic image is still hardly affordable for this region. Obtaining a new value in seismic data processing is a core function of the presented research. The use of dip-guided filtering combined with beam partitioned analysis and Z-domain dip analysis for reprocessing of 3D and 2D seismic data from the Carpathians region has been studied.
Czasopismo
Rocznik
Strony
1711--1719
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • R&D Department of Seismic Signal Processing Center, GK Processing, Balice, Kraków, Poland
  • The Faculty of Geology, Geophysics and Environmental Protection, AGH UST, Kraków, Poland
  • R&D Department of Seismic Signal Processing Center, GK Processing, Balice, Kraków, Poland
autor
  • R&D Department of Seismic Signal Processing Center, GK Processing, Balice, Kraków, Poland
Bibliografia
  • 1. Bashir Y, Ghosh D, Sum CW (2018) Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia. Acta Geophys 66(3):305–316. https://doi.org/10.1007/s11600-018-0149-7
  • 2. Bedi J, Toshniwal D (2018) SFA-GTM: seismic facies analysis based on generative topographic map and RBF, arXiv: 1806.00193v1
  • 3. Foldvary GZ (1988) Geology of the Carpathian region. World Scientific Publishing, Singapore, pp 130–157
  • 4. Fomel S (2002) Applications of plane-wave destruction filters. Geophysics 67:1946–1960. https://doi.org/10.1190/1.1527095
  • 5. Gupta M, Gupta G, Kumar Sharma M, Singh I (2014) Reflection seismic data analysis using big data. Adv Comput Sci Inf Technol 1(3):103–106
  • 6. Gutowski J, Urbaniec A, Złonkiewicz Z, Bobrek L, Świetlik B, Gliniak P (2007) Upper Jurassic and lower Cretaceous of the middle polish Carpathian foreland. Biuletyn Państwowego Instytutu Geologicznego 426:1–26
  • 7. He K, Sun J, Tang X (2013) Guided Image Filtering. IEEE Trans Pattern Anal Mach Intell 35(10):1–13. https://doi.org/10.1109/TPAMI.2012.213
  • 8. Hoeber H, Coleou A, Le Meur D (2003) On the use of geostatistical filtering techniques in seismic processing. In: SEG technical program expanded abstracts. https://doi.org/10.1190/1.1817728
  • 9. Jachowicz M (2014) The Terreneuvian and late Ediacaran organic microfossils from Kraków area. Biuletyn Państwowego Instytutu Geologicznego 459:61–82
  • 10. Karnkowski P (1994) 1994), Miocene deposits of the Carpathian Foredeep (according to results of oil and gas prospecting. Geol Q 38(3):377–394
  • 11. Koszarski L, Slaczka A (1976) The Outer (Flysch) Carpathians: the cretaceous. In: Cieśliński S (ed) Geology of Poland, vol I. Stratigraphy part 2: Instytut Geologiczny, Warszawa, pp 495–748
  • 12. Krasnov F, Butorin A, Sitnikov A (2018) Automatic detection of channels in seismic images via deep learning neural networks. Bus Inf 2(44):7–16. https://doi.org/10.17323/1998-0663.2018.2.7.16
  • 13. Krobicki M, Golonka J (2008) Geological history of Pieninny Kippen belt and Middle Jurassic black shales as one of the oldest deposits of the region—stratigraphical position and palaeo enviromental significance. Geoturystyka 2(13):3–18
  • 14. Książkiewicz M (1962) Geological atlas of Poland: stratigraphic and facial problems. Polish Geol Inst, Wydawnictwa Geologiczne
  • 15. Kyoung-jae K (2003) Financial time series forecasting using support vector machines. Neurocomputing 55(1):307–319
  • 16. Lewis W, Vigh D (2017) Deep learning prior models from seismic images for full-waveform inversion. In: SEG technical program expanded abstracts. https://doi.org/10.1190/segam2017-17627643.1
  • 17. Li Y, Cheng J, Zhu S, Wang C (2009) Seismic multi-attribute analysis based on RGB color blending technology. J China Coal Soc 11:018–034
  • 18. Moryc W, Jachowicz M (2000) Precambrian deposits in the Bochnia-Tarnów-Dębica region. Przegląd Geologiczny 48:601–606
  • 19. Protasov MI, Reshetova G, Tcheverda V (2015) Fracture detection by Gaussian beam imaging of seismic data and image spectrum analysis. Geophys Prospect 64:1. https://doi.org/10.1111/1365-2478.12259
  • 20. Randen T, Sonneland L (2000) Pre- and post-conditioning. In: Iske A, Randen T (eds) Mathematical methods and modelling in hydrocarbon exploration and production, mathematics in industry, vol 7. Springer, Berlin, pp 42–46
  • 21. Rawat N (2014) Big data analysis in oil and gas industry. Int J Sci Eng Res 5(5):1–6
  • 22. Ross HN (1990) Gaussian beam migration. Geophysics 55(11):1416. https://doi.org/10.1190/1.1442788
  • 23. Sienkiewiczówna H (1957) Geological structure of Miocene substratum in Kraków–Pilzno region. Part 2. The Permian and Mesozoic period. Nafta-Gaz 62(6):263–282
  • 24. Ślączka A, Kruglow S, Golonka J, Oszczypko N, Popadyuk I (2006) The general geology of the outer Carpathians, Poland, Slovakia, and Ukraine. In: Golonka J, Picha F (eds) The Carpathians and their foreland: geology and hydrocarbon resources Edition: Memoir 84. American Association of Petroleum Geologists, Tulsa, pp 221–258. https://doi.org/10.1306/985610m843070
  • 25. Tanushev N (2008) Superpositions and higher order Gaussian beams. Commun Math Sci 6(2):449–475
  • 26. Tanushev N, Richard T, Fomel S, Engquist B (2011) Gaussian beam decomposition for seismic migration. SEG Tech Program Expand Abstr 30(1):3356–3361. https://doi.org/10.1190/1.3627894
  • 27. Tomczyk H (1963) Ordovician and Silurian in the basement of the Fore-Carpathian depression. Rocz Pol Towarz Geol 33:289–320
  • 28. Urbaniec J, Urbaniec A, Złonkiewicz Z, Bobrek L, Świetlik B, Gliniak P (2007) Lithostratigraphy and micropalaeontological characteristic of lower Cretaceous strata in the central part of the Carpathian Foreland. Przegląd Geologiczny 58(12):1161–1175
  • 29. Wang Ch, Wang Y, Xun C (2016) Multicomponent seismic noise attenuation with multivariate order statistic filters. J Appl Geophys 133:70–81. https://doi.org/10.1016/j.jappgeo.2016.07.023
  • 30. Worku N, Hambach R, Gross H (2018) Decomposition of a field with smooth wavefront into a set of Gaussian beams with non-zero curvatures. J Opt Soc Am A 35(7):1091–1102. https://doi.org/10.1364/JOSAA.35.001091
  • 31. Zaręba M (2016) Zaawansowane metody zwiększania koherencji sygnału sejsmicznego (The use of advanced seismic techniques to enhance coherency of seismic signal), Cooperation of science and industry in hydrocarbon exploration and production. Conf Mag Oil Gas Inst Kraków 209:201–204
  • 32. Zaręba M, Danek T (2018a) Nonlinear anisotropic diffusion techniques for seismic signal enhancing—Carpathian Foredeep study. E3S Web Conf 66:01016. https://doi.org/10.1051/e3sconf/20186601016
  • 33. Zaręba M, Danek T (2018b) VSP polarization angles determination: Wysin-1 processing case study. Acta Geophys 66(5):1047–1062. https://doi.org/10.1007/s11600-018-0200-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-034ee3c4-71ac-46b3-a07b-c95ddbfe15f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.