Identyfikatory
Warianty tytułu
Zerowanie zmiennych stanu deskryptorowych obwodów elektrycznych poprzez sprzężenia zwrotne
Języki publikacji
Abstrakty
The problem of zeroing of the state variables in descriptor electrical circuits by state-feedbacks is formulated and solved. Necessary and sufficient conditions for the existence of gain matrices such that the state variables of closed-loop systems are zero for time greater zero are established. The procedure of choice of the gain matrices is demonstrated on simple descriptor electrical circuits with regular pencils.
Sformułowano i rozwiązano nowy problem zerowania zmiennych stanu deskryptorowych (singularnych) liniowych obwodów elektrycznych poprzez dobór odpowiednich sprzężeń zwrotnych. Podano warunki konieczne i wystarczające istnienia takich sprzężeń zwrotnych zapewniających zerowanie zmiennych stanu dla chwil czasowych większych od zera. Zaproponowano procedurę doboru sprzężeń zwrotnych, którą zilustrowano prostymi przykładami odwodów elektrycznych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
200--203
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
Bibliografia
- [1] Dodig M. , Stosi c M. , Singular systems state feedbacks problem, Linear Algebra and its Applications, 431 (2009), no. 8, 1267-1292.
- [2] Dai L. , Singular control systems, Lecture Notes in Control and Inform. Sci., 118 (1989), Springer-Verlag, Berlin.
- [3] Fahmy M.M. , O'Rei l l J ., Matrix pencil of closed-loop descriptor systems: infinite-eigenvalues assignment, Int. J. Control, 49 (1989), no. 4, 1421-1431.
- [4] Gantmacher F.R. , The Theory of Matrices, Vols. I and II, Translated by K. A. Hirsch, Chelsea Publishing Co., (1959) New York.
- [5] Guang-Ren Duan, Analysis and Design of Descriptor Linear Systems, (2010) Springer.
- [6] Kaczorek T. , Elimination of finite eigenvalues of strongly singular systems by feedbacks in linear systems, Int. Conf. Mathematical Modelling as Means of Power Consumption, 18-23.06 (2001), Lwow, 73-77.
- [7] Kaczorek T. , Infinite eigenvalue assignment by an output feedback for singular systems, Int. J. Appl. Math. Comput. Sci., 14 (2004), no. 1, 19-23.
- [8] Kaczorek T. , Linear Control Systems: Analysis of Multivariable Systems, Research Studies Press and J. Wiley & Sons (1992), New York.
- [9] Kaczorek T., Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag (2007), London.
- [10] Kaczorek T. , Positivity of descriptor linear systems with regular pencils, Poznan University Technology Academic Journals, Electrical Engineering, 69 (2012), 9-22.
- [11] Kaczorek T. , Realization problem for singular positive continuous-time systems with delays, Control and Cybernetics, 36 (2007), no. 1, 47-57.
- [12] Kaczorek T. , Selected Problems of Fractional Systems Theory, Springer-Verlag (2011), Berlin,.
- [13] Kaczorek T. , Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archives of Control Sciences, 21 (2011), no. 3, 287-298.
- [14] Kaczorek T. , Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica, 5 (2011), no. 2, 42-51.
- [15] Kaczorek T. , Reduction and decomposition of singular fractional discrete-time linear systems, Acta Mechanica et Automatica, 5 (2011), no. 4, 62-66.
- [16] Kaczorek T. , Singular fractional discrete-time linear systems, Control and Cybernetics, 40 (2011), no. 3, 753-761.
- [17] Kaczorek T. , Singular fractional linear systems and electrical circuits, Int. J. Appl. Math. Comput. Sci., 21 (2011), no. 2, 379-384.
- [18] Kucera V. , Zagalak P., Fundamental theorem of state feedback for singular systems, Automatica, 24 (1988), no. 5, 653-658.
- [19] Luenberger D.G., Time-invariant descriptor systems, Automatica, 14 (1978), no. 5, 473-480.
- [20] Van Dooren P. , The computation of Kronecker's canonical form of a singular pencil, Linear Algebra and Its Applications, 27 (1979), 103-140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-034dc972-e54d-4599-987b-2e6117030438