PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of kaliophilite by alkaline fusion and ultrasonic treatment method from kaolin raw material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mexico has important kaolin deposits, which must be assessed to obtain products with a high commercial value, such as kaliophilite as raw material for biodiesel production. Two kaolins, A and B, with approximate SiO2:Al2O3 ratios of 1 and 1.2, respectively, were used as raw materials to produce kaliophilite. Both kaolins were obtained from the municipality of Agua Blanca in the State of Hidalgo, Mexico. Kaolins are a source of Al and Si for the synthesis of kaliophilite through an alkali fusion process at 700 °C followed by ultrasonic treatment at 28 kHz to different times and for Kaolin-KOH ratios of 1:1 and 1:1.2 (mass: mass). The kaolins as received and the alkaline mixtures heat and ultrasonically treated were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The most suitable kaolin for synthesizing kaliophilite was kaolin A with the Si/Al mass ratio of approximately 1, which exhibited a higher crystallinity index range from 54 to 79.6%. Higher KOH concentrations promote the amorphous material formation decreasing the kaliophilite amount. The crystallinity index was increased when the time of ultrasonic treatment was increased.
Słowa kluczowe
Rocznik
Strony
art. no. 186627
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
  • Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo (UAEH), México
  • Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo (UAEH), México
  • Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo (UAEH), México
  • Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo (UAEH), México
  • Laboratorio de Agrobiotecnología, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, México
  • Departamento de Formación Profesional Genérica. Instituto Politécnico Nacional – Unidad Profesional Interdisciplinaria de Ingeniería campus Hidalgo (UPIIH-IPN), México
Bibliografia
  • ADEOYE, J.B., OMOLEYE, J.A., OMOLEYE, M.E., 2018. Development of alum from kaolin deposit using response surface methodology. MOJ Bioorganic & Organic Chemistry. 2(3), 166-169.
  • AUTEF, A., PRUD’HOMME, E., JOUSSEIN, E., GASGNIER, G., PRONIER, S., ROSSIGNOL, S., 2013. Evidence of a gel in geopolymer compounds from pure metakaolin. Journal of Sol-Gel Science and Technology. 67(3), 534-544.
  • AYELE, L., PÉREZ-PARIENTE, J., CHEBUDE, Y., & DÍAZ, I., 2015. Synthesis of zeolite A from Ethiopian kaolin. Microporous and Mesoporous Materials. 215, 29-36.
  • AYENI, O., ONWUALU, A. P., BOAKYE, E., 2021. Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications. Construction and Building Materials. 272, 121938.
  • BANG, J.H., SUSLICK, K. S., 2010. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Advanced Materials. 22(10), 1039-1059.
  • BARRER, R.M., COLE, J.F., STICHER, H., 1968. Chemistry of soil minerals. Part V. Low-temperature hydrothermal transformations of kaolinite. Journal of the Chemical Society A: Inorganic, Physical, Theoretical. 0, 2475-2485.
  • BECERRO, A. I., ESCUDERO, A., MANTOVANI, M., 2009. The hydrothermal conversion of kaolinite to kalsilite: Influence of time, temperature, and pH. American Mineralogist. 94(11-12), 1672-1678.
  • BRECK, D. W., 1984, Zeolite Molecular Sieves: Structure, Chemistry, and Use. R.E. Krieger.
  • CHEN, X., CHEN, J., LI, M., WANG, J., ZHOU, Z., DU, P., ZHANG, X., 2022. Synthesis of kaliophilite from high calcium fly ash: Effect of alkali concentration. Case Studies in Construction Materials. 17, e01542.
  • COOK, L.P., ROTH, R. S., PARKER, H. S., NEGAS, T., 1977. The system K2O-Al2O3-SiO2; Part 1, Phases on the KAlSiO4-KAlO2 join. American Mineralogist. 62(11-12), 1180-1190.
  • CHEARY, R.W., COELHO, A.A., 1992. A fundamental parameters approach to X-ray line-profile fitting, J. Appl. Cryst. 25(2), 109-121.
  • DE PABLO-GALAN, L., 1979. The Clay Deposits of Mexico. In M. M. Mortland & V. C. Farmer (Eds.), Developments in Sedimentology (Vol. 27, pp. 475-486). Elsevier.
  • DEER, W.A., 1997. Rock forming minerals / W.A. Deer, R.A. Howie, J. Zussman. Vol. 1A, Orthosilicates. (Second edition / Repr. with corrections.). Geological Society.
  • DOYLE, A.M., ALBAYATI, T.M., ABBAS, A.S., ALISMAEEL, Z.T., 2016. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renewable Energy. 97, 19-23.
  • DUXSON, P., LUKEY, G.C., VAN DEVENTER, J.S.J., 2006. Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolution. Journal of Non-Crystalline Solids. 352(52-54), 5541-5555.
  • EKOSSE, G.-I.E., 2010. Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. Applied Clay Science. 50(2), 212-236.
  • ELLIS, N., MASNADI, M.S., ROBERTS, D.G., KOCHANEK, M.A., ILYUSHECHKIN, A.Y., 2015. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity. Chemical Engineering Journal. 279, 402-408.
  • ERASMUS, E., 2016. The influence of thermal treatment on properties of kaolin. Hemijska industrija. 70(5), 595-601.
  • ESAIFAN, M., KHOURY, H., ALDABSHEH, I., RAHIER, H., HOURANI, M., WASTIELS, J., 2016. Hydrated lime/potassium carbonate as an alkaline activating mixture to produce kaolinitic clay-based inorganic polymer. Applied Clay Science. 126, 278-286.
  • FURTADO, C.A., KIM, U.J., GUTIERREZ, H.R., PAN, L., DICKEY, E.C., EKLUND, P.C., 2004. Debundling and Dissolution of Single-Walled Carbon Nanotubes in Amide Solvents. J. Am. Chem. Soc. 126 (19), 6095–6105.
  • GUNGOREN, C., OZKAN, S. G., OZDEMIR, O., 2024. Use of Ultrasound in Physical and Chemical Mineral Processing Operations. In S. J. Ikhmayies (Ed.), Advances in Minerals Research, 25-54. Springer Nature Switzerland.
  • HATO, M.J., MOTAUNG, T.E., CHOI, H.J., SCRIBA, M., KHUMALO, V.M., MALWELA, T., 2017. Effect of organoclay on the properties of maleic-anhydride grafted polypropylene and poly(methyl methacrylate) blend. Polymer Composites, 38(3), 431-440.
  • HE, P.Y., ZHANG, Y.J., CHEN, H., HAN, Z. C., LIU, L.C., 2019. Low-energy synthesis of kaliophilite catalyst from circulating fluidized bed fly ash for biodiesel production. Fuel. 257, 116041.
  • HEAH, C.Y., KAMARUDIN, H., BAKRI, A. M. M. A., BINHUSSAIN, M., LUQMAN, M., NIZAR, I. K., RUZAIDI, C.M., LIEW, Y.M., 2011. Effect of Curing Profile on Kaolin-based Geopolymers. Physics Procedia. 22, 305-311.
  • HELLER-KALLAI, L., LAPIDES, I., 2003. Thermal reactions of kaolinite with potassium carbonate. Journal of Thermal Analysis and Calorimetry. 71, 689–698.
  • HERNÁNDEZ CHÁVEZ, M., VARGAS RAMÍREZ, M., HERRERA GONZÁLEZ, A., GARCÍA SERRANO, J., CRUZ RAMÍREZ, A., ROMERO SERRANO, J., SÁNCHEZ ALVARADO, R., 2021. Thermodynamic analysis of the influence of potassium on the thermal behavior of kaolin raw material. Physicochemical Problems of Mineral Processing. 57(1), 39-52.
  • ILIC, B., MITROVIC, A., MILICIC, L., 2010. Thermal treatment of kaolin clay to obtain metakaolin. Hemijska Industrija. 64(4), 351-356.
  • KHAN, M.I., KHAN, H.U., AZIZLI, K., SUFIAN, S., MAN, Z., SIYAL, A.A., MUHAMMAD, N., FAIZ UR REHMAN, M., 2017. The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Applied Clay Science. 146, 152-161.
  • KOUTNIK, P., 2019. Comparison of kaolin and kaolinitic claystones as raw materials for preparing meta-kaolinite-based geopolymers. Ceramics – Silikaty. 110-123.
  • LEE, S., KIM, Y.J., MOON, H.-S., 2003. Energy-Filtering Transmission Electron Microscopy (EF-TEM) Study of a Modulated Structure in Metakaolinite, Represented by a 14 Å Modulation. Journal of the American Ceramic Society. 86(1), 174-176.
  • MAHLOUJIFAR, M., MANSOURNIA, M., 2018. Kaolinite fusion in carbonate media: KAlSiO 4 –NaAlSiO 4 phase transformations and morphological study. Materials Research Express. 6(2), 025040.
  • MERLINO, S., 1984. Feldspathoids: Their Average and Real Structures. On W. L. Brown (Ed.), Feldspars and Feldspathoids (pp. 435-470). Springer Netherlands.
  • MURRAY, H. H., 1991. Overview—Clay mineral applications. Applied Clay Science. 5(5-6), 379-395.
  • MYMRIN, V., SANTOS, C.F.G., ALEKSEEV, K., AVANCI, M.A., KREUSCH, M.A., BORGA, T., GRAUPMANN, O., CAVALIN, F. L., MONTEIRO, R.A., RUY, V.A., 2018. Influence of kaolin clay on mechanical properties and the structure formation processes of white ceramics with inclusion of hazardous laundry sewage sludge. Applied Clay Science. 155, 95-102.
  • NAVARRO-PARDO, F., MARTÍNEZ-BARRERA, G., MARTÍNEZ-HERNÁNDEZ, A., CASTAÑO, V., RIVERAARMENTA, J., MEDELLÍN-RODRÍGUEZ, F., VELASCO-SANTOS, C., 2013. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One-Dimensional (1D) and Two-Dimensional (2D) Carbon. Materials. 6(8), 3494-3513.
  • NOVEMBRE, D., GIMENO, D., 2017. The Solid-state Conversion of Kaolin to Kalsio 4 Minerals: The Effects of Time and Temperature. Clays and Clay Minerals. 65(5), 355-366.
  • OECD., 2023. OECD-FAO Agricultural Outlook 2023-2032. OECD. https://doi.org/10.1787/08801ab7-en
  • OKAMOTO, Y., 1997. Structural Modification of KAISi04 Minerals. Earth Science Reports. 3(1), 57-64.
  • OKAMOTO, Y., KAWAHARA, A., 1996. Interpretation of the Crystal Structure of Synthetic Kaliophilite from the Domain Structure of Kalsilite. Okayama Univ. Earth Science Reports. 3(1), 57-64.
  • PARK, J., KIM, B.C., PARK, S.S., PARK, H.C., 2001. Conventional versus ultrasonic synthesis of zeolite 4A from kaolin. Journal of Materials Science Letters. 20, 531-533.
  • POTTS, P. J., 2003. Handbook of rock analysis. Science.
  • PRUD’HOMME, E., MICHAUD, P., JOUSSEIN, E., CLACENS, J.-M., ARII-CLACENS, S., SOBRADOS, I., PEYRATOUT, C., SMITH, A., SANZ, J., ROSSIGNOL, S., 2011. Structural characterization of geomaterial foams—Thermal behavior. Journal of Non-Crystalline Solids. 357(21), 3637-3647.
  • RAMASWAMY, S., RAGHAVAN, P., 2011. Significance of Impurity Mineral Identification in the Value Addition of Kaolin – A Case Study with Reference to an Acidic Kaolin from India. Journal of Minerals and Materials Characterization and Engineering, 10(11), 1007-1025.
  • RAMÍREZ-ORTIZ, J., MEDINA-VALTIERRA, J., ROSALES, M.M., 2011. Used Frying Oil for Biodiesel Production Over Kaolinite as Catalyst. World Academy of Science, Engineering and Technology, Open Science Index 56. International Journal of Chemical and Biological Engineering. 5(8), 710-713.
  • SAUTER, C., EMIN, M. A., SCHUCHMANN, H. P., TAVMAN, S., 2008. Influence of Hydrostatic Pressure and Sound Amplitude on the Ultrasound Induced Dispersion and De-agglomeration of Nanoparticles. Ultrason. Sonochem. 15(4), 517–523.
  • SELMANI, S., SDIRI, A., BOUAZIZ, S., JOUSSEIN, E., ROSSIGNOL, S., 2017. Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay. Applied Clay Science. 146, 457-467.
  • SMITH, J. V., & TUTTLE, O. F., 1957. The nepheline-kalsilite system; Part I, X-ray data for the crystalline phases. American Journal of Science. 255(4), 282-305.
  • SOURI, A., GOLESTANI-FARD, F., NAGHIZADEH, R., VEISEH, S., 2015. An investigation on pozzolanic activity of Iranian kaolins obtained by thermal treatment. Applied Clay Science. 103, 34-39.
  • SRUTHI, P.L., REDDY P.H.P., 2017. Characterization of kaolinitic clays subjected to alkali contamination. Applied Clay Science. 146, 535-547.
  • SRUTHI, P.L., REDDY, P.H.P., MOGHAL, A.A.B., 2020. Role of Alkali Concentration on the Micro-Level Characteristics of Kaolinitic Clay. Geo-Congress. 189-198.
  • TUTTLE, O.F., SMITH, J.V., 1958. The nephelinekalsilite system; II, Phase relations. American Journal of Science, 256(8), 571-589.
  • WANG, G., JENSEN, P.A., WU, H., FRANDSEN, F.J., LAXMINARAYAN, Y., SANDER, B., GLARBORG, P., 2019. KOH capture by coal fly ash. Fuel. 242, 828-836.
  • Wang, G., Jensen, P. A., Wu, H., Frandsen, F. J., Sander, B., & Glarborg, P., 2018. Potassium Capture by Kaolin, Part 1: KOH. Energy & Fuels. 32(2), 1851-1862.
  • WANG, J., CHEN, X., LI, C., ZHOU, Z., DU, P., ZHANG, X., 2023. Evaluating the effect of kaliophilite on the fire resistance of geopolymer concrete. Journal of Building Engineering. 75, 106975.
  • WANG, P., SUN, Q., ZHANG, Y., CAO, J., 2019. Synthesis of Zeolite 4A from Kaolin and Its Adsorption Equilibrium of Carbon Dioxide. Materials. 12(9), 1536.
  • WEN, G., YAN, Z., SMITH, M., ZHANG, P., WEN, B., 2010. Kalsilite based heterogeneous catalyst for biodiesel production. Fuel. 89(8), 2163-2165.
  • YAO, Z., XIA, M., YE, Y., ZHANG, L., 2011. Kaliophilite from fly ash: Synthesis, characterization, and stability. Bulletin of Materials Science. 34(7), 1671-1674.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-034bcd6f-27ba-4e9a-a2ef-512037c55089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.