PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Dean's curve to investigation of a long-term evolution of the southern Baltic multi-bar shore profile

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of studies on the long-term evolution of the multi-bar cross-shore profiles. The analysis is focused on time-dependent variability of shoreline position, a modified parameter A of the conventional Dean's equation and a parameter F describing the amount of nearshore sediment resources in the multi-bar cross-shore profile. The study also deals with interrelationships between these quantities. The analysis is carried out using field data collected at Lubiatowo, Poland, on the dissipative shore, representative for the south Baltic. The considered coastal segment is found to be stable in the long-term scale. The results of analysis show that the parameter A can either increase or decrease together with the shoreline advance. It is concluded that the shoreline position change is a parameter unsatisfactorily representative for behaviour of the seashore. The use of the Dean's approximation for estimation of the sediment resources F on the multi-bar seashore profiles is found reasonable to eliminate the effects of peculiarities of such shores.
Czasopismo
Rocznik
Strony
18--27
Opis fizyczny
Bibliogr. 18 poz., fot., rys., wykr.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences (IBW PAN), Gdańsk, Poland
autor
  • Institute of Hydro-Engineering, Polish Academy of Sciences (IBW PAN), Gdańsk, Poland
autor
  • Institute of Hydro-Engineering, Polish Academy of Sciences (IBW PAN), Gdańsk, Poland
Bibliografia
  • [1] Cieślak, A., 2001. Outline of the seashore protection strategy. Inż. Mor. Geotech. 22 (2), 65—73, (in Polish).
  • [2] Dean, R. G., 1976. Beach erosion: causes, processes, and remedial measures. Crit. Rev. Environ. Contr. 6 (3), 259—296.
  • [3] Dean, R. G., 1977. Equilibrium Beach Profiles: US Atlantic and Gulf Coasts. Ocean Eng. Tech. Rep. No. 12. Dep. Civil Eng., College Mar. Stud., Univ. Delaware, Newark, 45 pp.
  • [4] Dean, R. G., 1985. Physical modeling of littoral processes. In: Dalrymple, R. A. (Ed.), Physical Modelling in Coastal Engineering. A. A. Balkema, Rotterdam, Boston, 119—139.
  • [5] Dean, R. G., 2002. Beach Nourishment. Theory and Practice, Advanced Series on Ocean Engineering, vol. 18. World Sci. Publ. Co. Pte. Ltd., 399 pp.
  • [6] Dolan, T. J., 1983. Wave mechanisms for the formation of multiple longshore bars with emphasis on the Chesapeake Bay. (MCE thesis). Univ. Delaware, Newark, 208 pp.
  • [7] Dubrawski, R., Zawadzka, E., 2006. Future of the Polish Sea Shores. Wyd. IM, Gdańsk, 302 pp., (in Polish).
  • [8] Katoh, K., Yanagishima, S., 1993. Beach erosion in a storm due to infragravity waves. Rep. Port Harbour Res. Inst., Nagase, Yokosuka 31 (5), 73—102.
  • [9] Komar, P. D., 1998. Beach Processes and Sedimentation, 2nd ed. Prentice Hall, Upper Saddle River, NJ, 544 pp.
  • [10] Kubowicz-Grajewska, A., 2015. Morpholithodynamical changes of the beach and the nearshore zone under the impact of submerged breakwaters — a case study (Orłowo Cliff, the Southern Baltic). Oceanologia 57 (2), 144—158, http://dx.doi.org/10.1016/j.oceano.2015.01.002.
  • [11] Moore, L. J., Sullivan, C., Aubrey, D. G., 2003. Interannual evolution of multiple longshore sand bars in a mesotidal environment, Truro, Massachusetts, USA. Mar. Geol. 196 (3—4), 127—143, http://dx.doi.org/10.1016/S0025-3227(03)00028-8.
  • [12] Ostrowski, R., Skaja, M., 2011. Dependence of Hel Peninsula seashore stability on artificial nourishment. Inż. Mor. Geotech. 32 (6), 495—502, (in Polish).
  • [13] Pruszak, Z., Różyński, G., Szmytkiewicz, M., Skaja, M., 1999. Quasiseasonal morphological shore evolution response to variable wave climate. In: Kraus, N. C., McDougal, W. G. (Eds.), Proc. 4th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, vol. 2. ASCE, Reston, 1081—1093.
  • [14] Pruszak, Z., Różyński, G., Zeidler, R. B., 1997. Statistical properties of multiple bars. Coast. Eng. 31 (4), 263—280, http://dx.doi.org/10.1016/S0378-3839(97)00010-0.
  • [15] Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multibar coastal zone. Oceanologia 50 (1), 43—58.
  • [16] Shaltout, M., Tonbol, K., Omstedt, A., 2015. Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 57 (4), 293—307, http://dx.doi.org/10.1016/j.oceano.2015.06.004.
  • [17] Tsoukala, V. K., Chondros, M., Kapelonis, Z. G., Martzikos, N., Lykou, A., Belibassakis, K., Makropoulos, C., 2016. An integrated wave modelling framework for extreme and rare events for climate change in coastal areas — the case of Rethymno, Crete. Oceanologia 58 (2), 71—89, http://dx.doi.org/10.1016/j.oceano.2016.01.002.
  • [18] Uścinowicz, S. 1., Jegliński, W., Miotk-Szpiganowicz, G., Nowak, J., Pączek, U., Przezdziecki, P., Szefler, K., Poręba, G., 2014. Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed. Oceanologia 56 (4), 857—880, http://dx.doi.org/10.5697/oc.56-4.857.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0349c0ae-8b34-4636-b5f2-e19500b2d8e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.