PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ struktury porowatej na estetykę i właściwości fizyczne komponentów wewnętrznych z PP do pojazdów osobowych

Identyfikatory
Warianty tytułu
EN
The influence of the porous structure on the aesthetics and physical properties of PP internal components for passenger cars
Języki publikacji
PL
Abstrakty
PL
Celem badań była ocena wpływu poroforów fizycznych i chemicznych na właściwości jakości powierzchni i mechaniczne estetycznych wyprasek wtryskowych dla przemysłu samochodowego. Badania wykonano przy użyciu formy typu core-back pozwalającej na wykonanie wyprasek wtryskowych o grubości do 4 mm. W badaniach oceniono wpływ zawartości poroforu na strukturę wyprasek oraz odporność na test upadającej kulki. Wykazano znaczące zmniejszenie masy i gęstości wyprasek wtryskowych z poroforem, co może przyczynić się do obniżenia zużycia surowca, a tym samym mieć pozytywny aspekt ekologiczny i ekonomiczny. Otrzymana struktura porowata dzięki technologii formowania core-back charakteryzowała się jednolitą wielkością i rozmieszczeniem porów w rdzeniu wypraski wtryskowej. Wykazano również znaczące zmniejszenie odporności udarnościowej wyprasek porowatych oraz znaczący spadek ich walorów estetycznych
EN
The aim of the research was to assess the impact of physical and chemical blowing agents on the surface quality and mechanical properties of aesthetic injection moulded parts for the automotive industry. The tests were carried out using a core-back type mold that allows the production of injection moulded parts with a thickness of up to 4 mm. The tests evaluated the impact of the blowing agent content on the structure of the moulded parts and the resistance to the falling ball test. A significant decrease in the weight and density of injection moulded parts with a blowing agent was demonstrated, which may contribute to the reduction of raw material consumption and thus positive ecological and economic aspects of the method used. The obtained porous structure, due to the core-back moulding technology, was characterized by a uniform size and distribution of pores in the core of the injection moulding. A significant decrease in the impact resistance of porous moulded parts and a significant decrease in their aesthetic values were also demonstrated.
Rocznik
Strony
10--17
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Boryszew Commodities Sp. z o.o. z siedzibą w Warszawie, Warszawa
  • Boryszew SA odział MaFlow w Tychach, Tychy
Bibliografia
  • [1] S.J.A. Rizvi, Microcellular foam injection molding of thermoplastics using green physical blowing agent. Mater. Sci. Forum 875 (2016) 77-111, www.scientific.net/MSF.875.77.
  • [2] J. Gómez-Monterde, J. Hain, M. Sánchez-Soto, M.L. Maspoch: Microcellular injection moulding: a comparison between MuCell process and the novel micro-foaming technology IQ Foam. J. Mater. Process. Technol. 268 (2019) 162-170, https://doi. org/10.1016/j.jmatprotec.2019.01.015.
  • [3] J. Xu, L.-S. Tom Turng: Microcellular injection moding, first ed., Wiley, New Jersey (2010), https://doi.org/10.1002/9780470642818.
  • [4] V. Volpe: Foam injection molding with physical blowing agents. Uniservitá Degli Studi di Salerno (2013).
  • [5] M. Berry: Microcellular injection molding. Applied Plastics Engineering Handbook, second ed., Elsevier (2011) 203-216, https:// doi.org/10.1016/B978-1-4377-3514-7.10014-5.
  • [6] S. Ries, A. Spoerrer, V. Altstaedt: Foam injection molding of thermoplastic elastomers: blowing agents, foaming process and characterization of structural foams. AIP Conf. Proc. (2015) 401-410, https://doi.org/10.1063/1.4873809.
  • [7] G. Llewelyn, A. Rees, C.A. Griffiths, M. Jacobi: A novel hybrid foaming method for low-pressure microcellular foam production of unfilled and talc-filled copolymer polypropylenes. Polymers 11 (2019), https://doi.org/10.3390/polym11111896.
  • [8] H.P. Heim: Gas- and fluid-injection technique. W: H.-P. Heim (ed.), Specialized injection molding techniques, Elsevier (2015) 1-247, https://doi.org/10.1016/C2013-0-14459-5.
  • [9] A. Yusa, S. Yamamoto, H. Goto, H. Uezono, F. Asaoka, L. Wang, M. Ando, S. Ishihara, M. Ohshima: A new microcellular foam injection-molding technology using non-supercritical fluid physical blowing agents. Polym. Eng. Sci. 57 (2017) 105-113, https://doi. org/10.1002/pen.24391.
  • [10] T. Arping, T. Krumpholz, W. Michaeli: Modelling the acoustic behaviour of plastic parts in the engine compartment. W: Proc. Annu. Tech. Conf. Soc. Plast. Eng. 2008, Society of Plastics Engineers, Brookfield, Connecticut (2008) 688-692.
  • [11] M. Rohleder, F. Jakob: Foam injection molding. W: Specialized injection molding techniques, Elsevier (2016) 53-106, https:// doi.org/10.1016/B978-0-323-34100-4.00002-X.
  • [12] J. Gómez-Monterde, M. Sánchez-Soto, M.L. Maspoch: Influence of injection molding parameters on the morphology, mechanical and surface properties of ABS foams. Adv. Polym. Technol. 37 (2018) 2707-2720, https://doi.org/10.1002/adv.21944.
  • [13] J. Lee, L.S. Turng, E. Dougherty, P. Gorton: A novel method for improving the surface quality of microcellular injection molded parts. Polymer 52 (2011) 1436-1446, https://doi.org/10.1016/j. polymer.2011.01.026.
  • [14] H.L. Chen, R. Der Chien, S.C. Chen: Using thermally insulated polymer film for mold temperature control to improve surface quality of microcellular injection molded parts. Int. Commun. Heat Mass Tran. 35 (2008) 991-994, https://doi.org/10.1016/j. icheatmasstransfer.2008.04.017.
  • [15] G. Hu, B. Hu: Surface morphology analysis of microcellular foam injection parts molded using the PP/N2 system. Madridge J. Nanotechnol. Nanosci. 1 (2016) 14-21, https://doi.org/10.18689/ mjnn-1000106.
  • [16] N. Ykhlef, E. Lafranche: Injection-moulding of nitrogen-foamed bio-based microcellular poly(butylene succinate): processing conditions/foam structure/flexural properties relationship. Polym. Renew. Resour. 11 (2020) 30-46, https://doi. org/10.1177/2041247920952653.
  • [17] T. Guo: Mechanical properties and microstructural investigations of welded MuCell® Glass Fibre Reinforced PA 6, University of Windsor (2015).
  • [18] V. Contreras, F.J. Maturana, J. Poveda, K.C. Núňez, J.C. Merino, J.M. Pastor: Optimization of injection parameters to obtain selected properties on foamed PP with hollow glass microspheres and thermally expandable microspheres using Taguchi method. J. Cell. Plast. (2020), https://doi.org/10.1177/0021955X20943097, 0021955X2094309.
  • [19] C. Kastner, G. Steinbichler, S. Kahlen, M. Jerabek: Influence of process parameters on mechanical properties of physically foamed, fiber reinforced polypropylene parts. J. Appl. Polym. Sci. 136 (2018) 47275, https://doi.org/10.1002/app.47275.
  • [20] C.L. Xiao, H.X. Huang, X. Yang: Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts. Appl. Therm. Eng. 100 (2016) 478-489, https://doi.org/10.1016/j.appl-thermaleng.2016.02.045.
  • [21] V. Volpe, S. Lanzillo, G. Affinita, B. Villacci, I. Macchiarolo, R. Pantani, Lightweight high-performance polymer composite for automotive applications. Polymers 11 (2019) 1-16, https://doi. org/10.3390/polym11020326.
  • [22] G. Dong, G. Zhao, Y. Guan, S. Li, X. Wang: Formation mechanism and structural characteristics of unfoamed skin layer in microcellular injectionmolded parts. J. Cell. Plast. 52 (2016) 419-439, https://doi.org/10.1177/0021955X15577149.
  • [23] P. Palutkiewicz, P. Postawa, J. Wawrzyniak: The impact of selected injection conditions on the properties and structure of molded parts made of HDPE with chemical blowing agent. Arch. Metall. Mater. 66 (2) (2021) 497-502, https://doi.org/10.24425/ amm.2021.135884.
  • [24] P. Palutkiewicz, J. Wawrzyniak: Wpływ warunków uplastyczniania na właściwości i strukturę wyprasek z PE-HD z poroforem (The influence of plastifying conditions on selected properties and structure of moulded parts from HDPE with blowing agent). Przetwórstwo Tworzyw 5 (149) (2012) 489-494, http://gliwice. impib.pl/nasze-wydawnictwa/przetworstwo-tworzyw/roczniki.
  • [25] C. Lima, F. Andrade, C. Kawakami, C. Gonçalves, W. Peraro: Methods to improve the surface quality of microcellular injection molded parts - a review. SAE Tech. Pap. Part F1270 (2016), https://doi.org/10.4271/2016-36-0224.
  • [26] S.-C. Chen, P.-S. Hsu, S.-S. Hwang: The effects of gas counter pressure and mold temperature variation on the surface quality and morphology of the microcellular polystyrene foams. J. Appl. Polym. Sci. 127 (2013) 4769-4776, https://doi.org/10.1002/ app.37994.
  • [27] G. Wang, G. Zhao, J. Wang, L. Zhang: Research on formation mechanisms and control of external and inner bubble morphology in microcellular injection molding. Polym. Eng. Sci. 55 (2014) 807-835, https://doi.org/10.1002/pen.23948.
  • [28] G. Dong, G. Zhao, L. Zhang, J. Hou, B. Li, G. Wang: Morphology evolution and elimination mechanism of bubble marks on surface of microcellular injection-molded parts with dynamic mold temperature control. Ind. Eng. Chem. Res. 57 (2018) 1089-1101, https://doi.org/10.1021/acs.iecr.7b04199.
  • [29] T. Ishikawa, M. Ohshima: Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process. Polym. Eng. Sci. 51 (2011) 1617-1625, https://doi.org/10.1002/PEN.21945.
  • [30] J.A.R. Ruiz, M. Vincent, J.F. Agassant, A. Claverie, S. Huck: Morphological analysis of microcellular PP produced in a core-back injection process using chemical blowing agents and gas counter pressure. Polym. Eng. Sci. 55 (2015) 2465-2473, https://doi. org/10.1002/PEN.24136.
  • [31] J. Hou, G. Zhao, G. Wang: Polypropylene/talc foams with high weight reduction and improved surface quality fabricated by mold-opening microcellular injection molding. J. Mater. Res. Technol. 12 (2021) 74-86, https://doi.org/10.1016/j.jmrt.2021.02.077.
  • [32] H. Wu, G. Zhao, G. Wang, W. Zhang, Y. Li: A new core-back foam injection molding method with chemical blowing agents. Mater. Des. 144 (2018) 331-342, https://doi.org/10.1016/j.matdes.2018.02.043.
  • [33] G. Llewelyn, A. Rees, C.A. Griffiths, S.G. Scholz: Advances in microcellular injection moulding. J. Cell. Plast. (2020) 1-29, https://doi.org/10.1177/0021955X20912207.
  • [34] P. Palutkiewicz: Symulacje komputerowe procesu wtryskiwania porującego. Polimery 2 (60) (2015) 132-143, https://doi. org/10.14314/polimery.2015.132.
  • [35] T. Jiang, H. Zhang, X. Zeng, C. Zhang, W. Gong, L. He: The effect of injection process for microcellular foaming on the cell morphology and surface quality of Polyamide 6. Mater. Res. Express 8 (2021) 045311, https://doi.org/10.1088/2053-1591/abf8e3.
  • [36] J. Wawrzyniak: Wspomaganie komputerowe procesu wtryskiwania spieniającego wyprasek wysoko estetycznych dla branży automotive. Inżynieria Materiałowa 2 (2023) 17-24, DOI: 10.15199/28.2023.2.3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0346c99b-a646-4501-8e87-f67a155f812e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.