PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of Dot-product preprocessing for Track-Before-Detect tracking of noise objects

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Track-Before-Detect (TBD) algorithms are applied for the tracking of signals below the noise floor. The noise object is the signal that has noise samples only. The processing of such signal using Spatio-Temporal TBD is not possible directly. The preprocessing technique based on the window approach and dot-product calculations emphasis the differences between global and local empirical distributions. The Monte Carlo tests are applied for the analysis of performance for two smoothing coefficients, different width of the window of analysis and different size of the object.
Słowa kluczowe
Rocznik
Tom
Strony
447--454
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology, 71-126 Szczecin, ul. 26. Kwietnia 10
Bibliografia
  • [1] Bar-Shalom Y., Multitarget-Multisensor Tracking: Applications and Advances, vol. II, Artech House, 1992.
  • [2] Blackman S., Multiple-Target Tracking with Radar Applications. Artech House, 1986.
  • [3] Blackman S., Popoli R., Design and Analysis of Modern Tracking Systems, Artech House, 1999.
  • [4] Boers Y., Ehlers F., Koch W., Luginbuhl T., Stone L.D., Streit R.L., Track Before Detect Algorithm, EURASIP Journal on Advances in Signal Processing, 2008.
  • [5] Mazurek P., Application of dot product for Track-Before-Detect tracking of noise objects, Poznan University of Technology Academic Journals - Electrical Engineering, no. 76, 101-107, 2013.
  • [6] Mazurek P., Chi-square statistic for noise objects tracking in Track-Before-Detect systems, Poznan University of Technology Academic Journals - Electrical Engineering, no. 71, 177-184, 2012.
  • [7] Mazurek P., Comparison of Different Measurement Spaces for Spatio-Temporal Recurrent Track-Before-Detect Algorithm, Advances in Intelligent and Soft Computing, vol. 102 - Image Processing and Communications Challenges 3, Springer Verlag, 157-164, 2011.
  • [8] Mazurek P., Hierarchical Track-Before-Detect Algorithm for Tracking of Amplitude Modulated Signals, Advances in Intelligent and Soft Computing, vol. 102 - Image Processing and Communications Challenges 3, Springer Verlag, 511-518, 2011.
  • [9] Mazurek P., Optimization of bayesian Track-Before-Detect algorithms for GPGPUs implementations, Electrical Review, R. 86 no. 7/2010, 187-189, 2010.
  • [10] Mazurek P., Optimization of Track-Before-Detect systems for GPGPU, Measurement Automation and Monitoring, vol. 56 no. 7, 665-667, 2010.
  • [11] Mazurek P., Optimization of Track-Before-Detect Systems with Decimation for GPGPU, Measurement Automation and Monitoring, vol. 56 no. 12, 1523-1525, 2010.
  • [12] Mazurek P., Track-Before-Detect Algorithm for Noise Objects, Measurement Automation and Monitoring, vol. 56 no. 10, 1183-1185, 2010.
  • [13] Stone L. D., Barlow C. A., Corwin T. L. Bayesian Multiple Target Tracking. Artech House, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-034521dc-4459-4fa4-aab3-227141f692f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.