Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a power system stabilizer (PSS) with optimal controller parameters for damping low-frequency power oscillations in the power system. A novel meta-heuristic, weighted grey wolf optimizer (GWO) has been proposed, it is a variant of the grey wolf optimizer (GWO). The proposed WGWO algorithm has been executed in the selection of controller parameters of a PSS in a multi-area power system. A two-area four- machine test system has been considered for the performance evaluation of an optimally tuned PSS. A multi-objective function based on system eigenvalues has been minimized for obtained optimal controller parameters. The damping characteristics and eigenvalue location in the proposed approach have been compared with the other state-of-the-art- methods, which illustrates the effectiveness of the proposed approach.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
297--407
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
- Gandhi Institute of Technology and Management (GITAM) Visakhapatnam, India
autor
- Gandhi Institute of Technology and Management (GITAM) Visakhapatnam, India
Bibliografia
- [1] Abido M. A., Power system stability enhancement using facts controllers: a review, Arabian Journal for Science and Engineering, vol. 34, no. 1B, pp. 153–172 (2009).
- [2] Anderson P. M., Fouad A. A., Power system control and stability, John Wiley & Sons (2008).
- [3] Rogers G., Power System Oscillations, Springer US (2000).
- [4] Devarapalli R., Bhattacharyya B., A novel hybrid AGWO-PSO algorithm in mitigation of power network oscillations with STATCOM, Numerical Algebra, Control & Optimization, vol. 11, no. 4, p. 579 (2021), DOI: 10.3934/naco.2020057.
- [5] Devarapalli R., Bhattacharyya B., Kumari A., A novel approach of intensified barnacles mating optimization for the mitigation of power system oscillations, Concurrency and Computation: Practice and Experience, vol. 33, no. 17, e6303 (2021), DOI: 10.1002/cpe.6303.
- [6] Devarapalli R., Bhattacharyya B., Kumari A., Enhancing Oscillation Damping in a Power Network Using EWOA Technique, in Advances in Smart Grid Automation and Industry 4.0, Singapore, pp. 27–36 (2021), DOI: 10.1007/978-981-15-7675-1_3.
- [7] Devarapalli R., Bhattacharyya B., Kumar V., Kumar S., Improved Moth Flame Optimization in Systematization of STATCOM and PSS, in Advances in Smart Grid Automation and Industry 4.0, Singapore, pp. 481–491 (2021), DOI: 10.1007/978-981-15-7675-1_48.
- [8] Xiao Y., Song Y.H., Liu C.-C., Sun Y.Z., Available transfer capability enhancement using FACTS devices, IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 305–312 (2003), DOI: 10.1109/TPWRS.2002.807073.
- [9] Gotham D.J., Heydt G.T., Power flow control and power flow studies for systems with FACTS devices, IEEE Transactions on Power Systems, vol. 13, no. 1, pp. 60–65 (1998), DOI: 10.1109/59.651614.
- [10] Galiana F.D. et al., Assessment and control of the impact of FACTS devices on power system performance, IEEE Transactions on Power Systems, vol. 11, no. 4, pp. 1931–1936 (1996), DOI: 10.1109/59.544666.
- [11] Devarapalli R., Bhattacharyya B., Optimal Controller Parameter Tuning of PSS Using Sine-Cosine Algorithm, in the book Metaheuristic and Evolutionary Computation: Algorithms and Applications, by Malik H., Iqbal A., Joshi P., Agrawal S., Bakhsh F.I., pp. 337–360, Eds. Singapore: Springer (2021).
- [12] Devarapalli R., Bhattacharyya B., Saw J.K., Controller parameter tuning of a single machine infinite bus system with static synchronous compensator using antlion optimization algorithm for the power system stability improvement, Advanced Control for Applications, vol. 2, no. 3, e45, pp. 1–12 (2020), DOI: 10.1002/adc2.45.
- [13] Devarapalli R., Bhattacharyya B., Power and energy system oscillation damping using multi-verse optimization, SN Appl. Sci., vol. 3, no. 3, p. 383 (2021), DOI: 10.1007/s42452-021-04349-2.
- [14] Prasad U., Sinha N.K., Rao B.V., Lakshmi N.J.N., Devarapalli R., Optimal placement of shunt capacitor with VCPI to improve voltage profile using Mi power, IOP Conf. Ser. Mater. Sci. Eng., vol. 981, 042061 (2020), DOI: 10.1088/1757-899X/981/4/042061.
- [15] Khan N.H. et al., A Novel Modified Lightning Attachment Procedure Optimization Technique for Optimal Allocation of the FACTS Devices in Power Systems, IEEE Access, vol. 9, pp. 47976–47997 (2021), DOI: 10.1109/ACCESS.2021.3059201.
- [16] Dash S.P., Subhashini K.R., Satapathy J.K., Optimal location and parametric settings of FACTS devices based on JAYA blended moth flame optimization for transmission loss minimization in power systems, Microsystem Technologies, vol. 26, no. 5, pp. 1543–1552 (2020).
- [17] Devarapalli R., Sinha N.K., Rao B.V., Knypinski Ł., Lakshmi N.J.N., Márquez F.P.G., Allocation of real power generation based on computing over all generation cost: an approach of Salp Swarm Algorithm, Archives of Electrical Engineering, vol. 70, no 2. pp. 337–349 (2021), DOI: 10.24425/aee.2021.136988.
- [18] Lakshmi P., Venkateswara Rao B., Devarapalli R., BAT algorithm based Optimal Power Flow for a Power System consisting of Wind Power plant and Static VAR Compensator, Michael Faraday IET International Summit 2020 (MFIIS 2020), pp. 7–12 (2020), DOI: 10.1049/icp.2021.1081.
- 19] Knypiński Ł., Modified grey wolf method for optimization of PM motors, ITM Web Conf., vol. 28, 01020 (2019), DOI: 10.1051/itmconf/20192801020.
- [20] Knypiński Ł., Kuroczycki S., Márquez F.P.G., Minimization of Torque Ripple in the Brushless DC Motor Using Constrained Cuckoo Search Algorithm, Electronics, vol. 10, no. 18 (2021), DOI: 10.3390/electronics10182299.
- [21] Knypiński Ł., Nowak L., Application of the Grey Wolf Algorithm for Optimization of PM Synchronous Motor, in 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), pp. 1–2 (2019), DOI: 10.1109/ISEF45929.2019.9097055.
- [22] Knypiński Ł., Pawełoszek K., Le Menach Y., Optimization of Low-Power Line-Start PM Motor Using Gray Wolf Metaheuristic Algorithm, Energies, vol. 13, no. 5 (2020), DOI: 10.3390/en13051186.
- [23] Knypiński Ł., Performance analysis of selected metaheuristic optimization algorithms applied in the solution of an unconstrained task, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (2021), DOI: 10.1108/COMPEL-07-2021-0254.
- [24] Knypiński Ł., Constrained optimization of line-start PM motor based on the gray wolf optimizer, Eksploatacja i Niezawodność, Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne, vol. 23, no. 1, pp. 1–10 (2021), DOI: 10.17531/ein.2021.1.1.
- [25] Mirjalili S., Mirjalili S.M., Lewis A., Grey Wolf Optimizer, Advances in Engineering Software, vol. 69, pp. 46–61 (2014), DOI: 10.1016/j.advengsoft.2013.12.007.
- [26] Devarapalli R., Bhattacharyya B., Sinha N.K., An intelligent EGWO-SCA-CS algorithm for PSS parameter tuning under system uncertainties, International Journal of Intelligent Systems, vol. 35, no. 10, pp. 1520–1569 (2020), DOI: 10.1002/int.22263.
- [27] Yan F., Xu X., Xu J., Grey Wolf Optimizer with a Novel Weighted Distance for Global Optimization, IEEE Access, vol. 8, pp. 120173–120197 (2020), DOI: 10.1109/ACCESS.2020.3005182.
- [28] Jitkongchuen D., Sukpongthai W., Thammano A., Weighted distance grey wolf optimization with immigration operation for global optimization problems, in 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 5–9 (2017), DOI: 10.1109/SNPD.2017.8022652.
- [29] Malik M.R.S., Mohideen E.R., Ali L., Weighted distance Grey wolf optimizer for global optimization problems, in 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–6 (2015), DOI: 10.1109/ICCIC.2015.7435714.
- [30] Basu M., Ghosh A., Das A., Sanyal A., Methods Adopted for Detailed Modelling of Alternators in State Space for Stability Analysis, J. Inst. Eng. India Ser. B, vol. 102, no. 1, pp. 87–98 (2021), DOI: 10.1007/s40031-020-00513-1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-033dda5d-6755-44f2-9cb7-1c55b020e3e5