Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ziegler Problem Revisited : Flutter and Divergence Interactions in a Generalized System

Warianty tytułu
Języki publikacji
The classic Ziegler column under compressive follower force is considered now in a generalized form including a stabilizing spring acting at the end of the column. Damping in the joints is neglected. With increasing spring stiffness from zero to infinity one can observe evolution of the dynamic properties of the column from the original free-end form to the limit configuration with the end simply supported. Attention is focused not only on the stability of the straight-form equilibrium of the column but also on the eigen-frequencies, eigen-values and eigen-forms of motion of the column near the equilibrium. The follower force is responsible for loss of stability but the stabilizing spring considerably affects the stability boundary. The most interesting phenomena occur in the low zone of the spring stiffness where quite complicated interactions between flatter and divergence is observed under increasing follower force. Detailed analysis of the eigen-values is presented in the four regions of the parameter space to demonstrate new phenomena not reported in the literature.
Opis fizyczny
Bibliogr. 14 poz.
  • Warsaw University of Technology
  • Warsaw University of Technology
  • 1. Euler, L.,1778, Examen Insignis Paradoxi in Theoria Columnarum Occurentis, Acta Acad. Sci. Petropolitanae, 1, pp. 146-162 (in Latin).
  • 2. Bolotin, V.V., 1961, Nonconservative Problems in the Theory of Elastic Stability, Fizmatgiz Publishers, Moscov (in Russian), 1964, English translation, Pergamon, N.Y.
  • 3. Timoshenko, S.P. and Gere, J.M., 1963, Theory of Elastic Stability, Mc Graw-Hill, Auckland.
  • 4. Ziegler, H., 1952, Die Stabilitätskriterien der Elastomechanik, Ingenieria, Mexico, 20 (1), pp. 49-56.
  • 5. Kordas, Z., Życzkowski, M., (1963), On the Loss of Stability of a Rod under a Super-tangential Force, Archive of Applied Mechanics, 15, 1, pp. 7-31.
  • 6. Bogacz, R., Irretier, H. and Mahrenholz, O., 1980, Optimal Design of Structures Subjected to Follower Forces, Ingenieur Archiv, 49, pp. 63-71.
  • 7. Bogacz, R. and Janiszewski, R., 1986, Analysis and Synthesis Problems of Columns under Follower Forces with Respect to Stability, IFTR Reports, 6, Warsaw.
  • 8. Koiter, W.T., 1996, Unrealistic Follower Forces, Journal of Sound and Vibration, 194, pp. 636-638.
  • 9. Païdoussis, M.P., 1998, Fluid-Structure Interaction, Slender Structures and Axial Flow, Academic, London.
  • 10. Sugiyama, Y., Katayama, K. and Kinoi, S., 1995, Flutter of Cantilever Column under Rocket Thrust, Journal of Aerospace Engineering, 8 (1), pp. 9-15.
  • 11. Kurnik, W. and Przybyłowicz, P.M., 2003, Active Stabilisation of a Piezoelectric Fiber Composite Shaft Subject to Follower Load, International Journal of Solids and Structures, 40, pp. 5063-579.
  • 12. Bigoni, D. and Noselli, G., Experimental Evidence of Flutter and Divergence Instabilities Induced by Dry Friction, 2011,
  • 13. Szmidt, T. and Przybyłowicz, P.M., 2012, An active Electromagnetic Stabilization of the Leipholz Column, Archives of Control Sciences, Vol. 22 (LVIII), No. 2, pp. 161-174.
  • 14. Kounadis, A. N. and Katsikadelis, J.T., (1980), On the Discontinuity of the Flutter Load for Various Types of Cantilevers, International Journal of Solids and Structures, 16, 4, pp.375-383.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.