PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic Characteristics of Thermophilic Aerobic Membrane Reactor (TAMR) for Iraqi Municipal Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We evaluated the performance of a wastewater treatment plant with a thermophilic aerobic membrane reactor (TAMR) system. The two kinetic models used to describe its behavior are the Stover-Kincannon modification and secondary order treatments. One could predict the kinetic parameters for removing both chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N) from the wastewater substrate. The substrate removal rate was 1.66 per day within a correlation coefficient оf 0.9978. Also, those coefficients for COD concentration are 0.9977 and 0.9965, according to the modified model. As for COD, the probable maximum utilization rate was estimated to be 60.24 g\L·day. The saturation value is about 64.81 g\L·day. However, the maximal uptake by biomass of ammonia nitrogen is 32.42 g/L·day, and the saturation constant is 30.12 g/L·day. Stover-Kincannon’s modified model has been shown to be an effective method for the treatment of sewage – and it even makes fairly accurate predictions as to what will happen wth the COD and the ammonia nitrogen content in sewage. In addition, it is useful for optimizing wastwater treatment that is both simple and highly efficient at producing accurate predictions.
Słowa kluczowe
Rocznik
Strony
303--312
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq
  • Chemical and Petroleum Engineering, Tabriz, Tabriz, Iran
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq
Bibliografia
  • 1. Abbas, G., Wang, L., Li, W., Zhang, M., Zheng, P., 2015. Kinetics of nitrogen removal in pilot-scale internal-loop airlift bio-particle reactor for simultaneous partial nitrification and anaerobic ammonia oxidation. Ecol. Eng. 74, 356–363. https://doi. org/10.1016/j.ecoleng.2014.09.035
  • 2. Abeynayaka, A., Visvanathan, C., 2011a. Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater. Bioresour. Technol. 102, 2358–2366. https://doi.org/10.1016/j. biortech.2010.10.096
  • 3. Abeynayaka, A., Visvanathan, C., 2011b. Performance comparison of mesophilic and thermophilic aerobic sidestream membrane bioreactors treating high strength wastewater. Bioresour. Technol. 102, 5345–5352. https://doi.org/10.1016/j. biortech.2010.11.079
  • 4. Abyar, H., Younesi, H., Bahramifar, N., Zinatizadeh, A.A., Amini, M., 2017. Kinetic evaluation and process analysis of COD and nitrogen removal in UAASB bioreactor. J. Taiwan Inst. Chem. Eng. 78, 272–281. https://doi.org/10.1016/j. jtice.2017.06.014
  • 5. Ahn, J.-H., Forster, C.., 2002. A comparison of mesophilic and thermophilic anaerobic upflow f ilters treating paper–pulp–liquors. Process Biochem. 38, 256–261. https://doi.org/10.1016/ S0032-9592(02)00088-2
  • 6. Ahn, J.H., Forster, C.F., 2000. Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater. Process Biochem. 36, 19–23. https://doi. org/10.1016/S0032-9592(00)00166-7
  • 7. Al-Bayati, I.S., Abd Muslim Mohammed, S., AlAnssari, S., 2023. Recovery of methyl orange from aqueous solutions by bulk liquid membrane process facilitated with anionic carrier. AIP Conf. Proc. 2414, 1–7. https://doi.org/10.1063/5.0114631
  • 8. Al-Furaiji, M., Waisi, B., Kalash, K., Kadhom, M., 2022. Effect of polymer substrate on the performance of thin-film composite nanofiltration membranes. Int. J. Polym. Anal. Charact. 27, 316–325. https://doi.org/10.1080/1023666X.2022.2073008
  • 9. Al-Furaiji, M.H., Kalash, K.R., 2020. Advanced oxidation of antibiotics polluted water using titanium dioxide in solar photocatalysis reactor. J. Eng. 26, 1–13. https://doi.org/10.31026/j.eng.2020.02.01
  • 10. Büyükkamaci, N., Filibeli, A., 2002. Determination of kinetic constants of an anaerobic hybrid reactor. Process Biochem. 38, 73–79. https://doi. org/10.1016/S0032-9592(02)00047-X
  • 11. Carranzo, I.V., 2012. Standard methods for examination of water and wastewater. In Anales de hidrología médica (Vol. 5, No. 2, p. 185). Universidad Complutense de Madrid. ISBN 978-087553-013-0
  • 12. Collivignarelli, M.C., Abbà, A., Bertanza, G., 2015. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste? Environ. Technol. (United Kingdom) 36, 2115–2124. https://doi.org/10.1080/09593330 .2015.1021860
  • 13. Collivignarelli, M.C., Abbà, A., Bertanza, G., Baldi, M., Setti, M., Frattarola, A., Carnevale Miino, M., 2021. Treatment of high strength wastewater by thermophilic aerobic membrane reactor and possible valorisation of nutrients and organic carbon in its residues. J. Clean. Prod. 280, 124404. https:// doi.org/10.1016/j.jclepro.2020.124404
  • 14. Collivignarelli, M.C., Abbà, A., Bertanza, G., Setti, M., Barbieri, G., Frattarola, A., 2018. Integrating novel (thermophilic aerobic membrane reactorTAMR) and conventional (conventional activated sludge-CAS) biological processes for the treatment of high strength aqueous wastes. Bioresour. Technol. 255, 213–219. https://doi.org/10.1016/j. biortech.2018.01.112
  • 15. Collivignarelli, M.C., Carnevale Miino, M., Baldi, M., Manzi, S., Abbà, A., Bertanza, G., 2019. Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf. Environ. Prot. 132, 105115. https://doi.org/10.1016/j.psep.2019.10.022
  • 16. Daigger, G.T., 2011. A practitioner’s perspective on the uses and future developments for wastewater treatment modelling. Water Sci. Technol. 63, 516526. https://doi.org/10.2166/wst.2011.252
  • 17. Debik, E., Coskun, T., 2009. Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresour. Technol. 100, 2777–2782. https://doi.org/10.1016/j.biortech.2008.12.058
  • 18. Dinsdale, R.M., Hawkes, F.R., Hawkes, D.L., 1997. Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater. Water Res. 31, 163–169. https://doi.org/10.1016/S0043-1354(96)00233-3
  • 19. Grau, P., Dohanyos, M. and Chudoba, J., 1975. Kinetics of multicomponent substrate removal by activated sludge. Water Research, 9(7), 637-642.
  • 20. Faridnasr, M., Ghanbari, B., Sassani, A., 2016. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment. Bioresour. Technol. 208, 149–160. https://doi.org/10.1016/j. biortech.2016.02.047
  • 21. González-Martínez, S., Lippert-Heredia, E., Hernández-Esparza, M., Doria-Serrano, C., 2000. Reactor kinetics for submerged aerobic biofilms. Bioprocess Eng. 23, 57–61. https://doi.org/10.1007/ s004499900122
  • 22. Grau, P., Dohányos, M., Chudoba, J., 1975. Kinetics of multicomponent substrate removal by activated sludge. Water Res. 9, 637–642. https://doi. org/10.1016/0043-1354(75)90169-4
  • 23. Hassani, A.H., Borghei, S.M., Samadyar, H., Ghanbari, B., 2014. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: kinetic and performance study. Environ. Technol. 35, 499–507. https://doi.org/10.1 080/09593330.2013.834947
  • 24. Hussein, B.I., 2010. Removal of Copper Ions from Waste Water by Adsorption with Modified and Unmodified Sunflower Stalks. J. Eng. 16, 5411–5421.
  • 25. Kalash, K.R., Alfuraiji, M.H. and Alazraqi, A.R., 2023. Performance of thermophilic aerobic membrane reactor (TAMR) for carpet cleaning wastewater. Progress in Color, Colorants and Coatings, 16(4), 377-385. https://doi.org/10.30509/ pccc.2023.167094.1201
  • 26. Kalash, K.R., Al-Furaiji, M., Ahmed, A.N., 2022. Kinetic characteristics and the performance of upf low biological aerated filters (UBAF) for Iraqi municipal wastewater. Pollution 8, 621–636. https:// doi.org/10.22059/POLL.2021.333654.1240
  • 27. Kapdan, I.K., 2005. Kinetic analysis of dyestuff and COD removal from synthetic wastewater in an anaerobic packed column reactor. Process Biochem. 40, 2545–2550. https://doi.org/10.1016/j. procbio.2004.11.002
  • 28. Mahmood, O.A.A., Waisi, B.I., 2021. Synthesis and characterization of polyacrylonitrile based precursor beads for the removal of the dye malachite green from its aqueous solutions. Desalin. Water Treat. 216, 445–455. https://doi.org/10.5004/dwt.2021.26906
  • 29. Miao, S., Jin, C., Liu, R., Bai, Y., Liu, H., Hu, C., Qu, J., 2020. Microbial community structures and functions of hypersaline heterotrophic denitrifying process: Lab-scale and pilot-scale studies. Bioresour. Technol. 310, 123244. https://doi.org/10.1016/j. biortech.2020.123244
  • 30. Mohammed, M.A., Al-bayati, I.S., Alobaidy, A.A., Waisi, B.I., Majeed, N., 2023. Investigation the eff iciency of emulsion liquid membrane process for malachite green dye separation from water. Desalin. Water Treat. 307, 190–195. https://doi.org/10.5004/ dwt.2023.29903
  • 31. Nga, D.T., Hiep, N.T., Hung, N.T.Q., 2020. Kinetic modeling of organic and nitrogen removal from domestic wastewater in a down-flow hanging sponge bioreactor. Environ. Eng. Res. 25, 243–250. https:// doi.org/10.4491/eer.2018.390
  • 32. Ni, B.-J., Yuan, Z., 2015. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes. Water Res. 87, 336346. https://doi.org/10.1016/j.watres.2015.09.049
  • 33. Pramanik, B.K., Fatihah, S., Shahrom, Z., Ahmed, E., 2012. Biological aerated filters (BAFs) for carbon and nitrogen removal: A review. J. Eng. Sci. Technol. 7, 428–446.
  • 34. Raj, S.A., Murthy, D.V.S., 1999. Comparison of the trickling filter models for the treatment of synthetic dairy wastewater. Bioprocess Eng. 21, 51–55. https://doi.org/10.1007/s004490050639
  • 35. Ramachandran, A., Rustum, R., Adeloye, A.J., 2019. Anaerobic digestion process modeling using Kohonen self-organising maps. Heliyon 5, e01511. https://doi.org/10.1016/j.heliyon.2019.e01511
  • 36. Wijekoon, K.C., Visvanathan, C., Abeynayaka, A., 2011. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour. Technol. 102, 5353–5360. https://doi.org/10.1016/j.biortech.2010.12.081
  • 37. Yang, G., Feng, L., Wang, S., Yang, Q., Xu, X., Zhu, L., 2015. Performance and enhanced mechanism of a novel bio-diatomite biofilm pretreatment process treating polluted raw water. Bioresour. Technol. 191, 271–280. https://doi.org/10.1016/j. biortech.2015.05.033
  • 38. Yee, T., Rathnayake, T., Visvanathan, C., 2019. Performance evaluation of a thermophilic anaerobic membrane bioreactor for palm oil wastewater treatment. Membranes (Basel). 9, 55. https://doi. org/10.3390/membranes9040055
  • 39. Yilmaz, T., Yuceer, A., Basibuyuk, M., 2008. A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater. Bioresour. Technol. 99, 156–163. https://doi. org/10.1016/j.biortech.2006.11.038
  • 40. Yu, H., Wilson, F., Tay, J., 1998. Kinetic analysis of an anaerobic filter. Water Resour. 32, 3341–3352.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03323436-faeb-493b-b36f-986d155e0244
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.