Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Oil slicks often show uncertain surface roughness and Fresnel reflection parameters. Consequently, differentiating oil spilled on the seawater in these areas using optical sensors is a challenge. Therefore, the optical mechanism of the oil film has been studied by the Maxwell equation. It is found that the polarization characteristics of the oil slicks can help us to overcome this problem. According to the Fresnel formula, the scattering coefficient and scattering rate of the homogeneous oil film have been deduced, and the phase difference of the scattering electromagnetic wave has also been calculated to verify the accuracy of the model. The parameter, a degree of scattering polarization, has been derived to identify the oil slicks on the sea wave. It depends on accurately knowing the Stokes parameter for the reflected light, and varies with the refractive index of the surface layer and viewing angles. The actual spilled oil has been measured by this model, and the oil film can be accurately identified at various angles. These preliminary results suggest that the potential of multi-angle polarization measurement of ocean surface needs further researches.
Czasopismo
Rocznik
Tom
Strony
433--445
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- The Higher Educational Key Laboratory of Optics-Electrics Application of Biomaterials, School of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
autor
- The Higher Educational Key Laboratory of Optics-Electrics Application of Biomaterials, School of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- National Defense Key Laboratory of Optoelectronic Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
autor
- National Defense Key Laboratory of Optoelectronic Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
autor
- The Higher Educational Key Laboratory of Optics-Electrics Application of Biomaterials, School of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
Bibliografia
- [1] BREKKE C., SOLBERG A.H.S., Oil spill detection by satellite remote sensing, Remote Sensing of Environment 95(1), 2005, pp. 1–13, DOI:10.1016/j.rse.2004.11.015.
- [2] CABALLERO A., ESPINO M., SAGARMINAGA Y., FERRER L., URIARTE A., GONZALEZ M., Simulating the migration of drifters deployed in the Bay of Biscay, during the Prestige crisis, Marine Pollution Bulletin 56(3), 2008, pp. 475–482, DOI:10.1016/j.marpolbul.2007.11.005.
- [3] LU J., Marine oil spill detection, statistics and mapping with ERS SAR imagery in south-east Asia, International Journal of Remote Sensing 24(15), 2003, pp. 3013–3032, DOI:10.1080/01431160110076216.
- [4] ESPEDAL H.A., JOHANNESSEN O.M., Detection of oil spills near off shore installations using synthetic aperture radar (SAR), International Journal of Remote Sensing 21(11), 2000, pp. 2141–2144, DOI:10.1080/01431160050029468.
- [5] MARIANO A.J., KOURAFALOU V.H., SRINIVASAN A., KANG H., HALLIWELL G.R., RYAN E.H., ROFFER M., On the modeling of the 2010 Gulf of Mexico Oil Spill, Dynamics of Atmospheres and Oceans 52(1–2), 2011, pp. 322–340, DOI:10.1016/j.dynatmoce.2011.06.001.
- [6] CORSELLIS Y.Y., KRASOVEC M.M., SYLVI L.L., CUNY P.P., MILITON C.C., Oil removal and effects of spilled oil on active microbial communities in close to salt-saturation brines, Extremophiles 20(3), 2016, pp. 235–250, DOI:10.1007/s00792-016-0818-x.
- [7] MIRALLES G., NERINI D., MANTE C., ACQUAVIVA M., DOUMENQ P., MICHOTEY V., NAZARET S., BERTRAND J., CUNY P., Effects of spilled oil on bacterial communities of Mediterranean coastal anoxic sediments chronically subjected to oil hydrocarbon contamination, Microbial Ecology 54(4), 2007, pp. 646–661, DOI:10.1007/s00248-007-9221-6.
- [8] JHA M.N., LEVY J., GAO Y., Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance, Sensors 8(1), 2008, pp. 236–255, DOI:10.3390/s8010236.
- [9] KESSLER J.D., VALENTINE D.L., REDMOND M.C., DU M., CHAN E.W., MENDES S.D., QUIROZ E.W., VILLANUEVA C.J., SHUSTA S.S., WERRA L.M., YVON-LEWIS S.A., WEBER T.C., A persistent oxygen anomaly reveals the fate of spilled methane in the Deep Gulf of Mexico, Science 331(6015), 2011, pp. 312–315, DOI:10.1126/science.1199697.
- [10] LEIFER I., CLARK J.F., CHEN R.F., Modifications of the local environment by natural marine hydrocarbon seeps, Geophysical Research Letters 27(22), 2000, pp. 3711–3714, DOI:10.1029/2000GL011619.
- [11] LU Y., LI X., TIAN Q., HAN W., An optical remote sensing model for estimating oil slick thickness based on two-beam interference theory, Optics Express 20(22), 2012, pp. 24496–24504, DOI:10.1364/OE.20.024496.
- [12] LU Y., ZHAN W., HU C., Detecting and quantifying oil slick thickness by thermal remote sensing: a ground-based experiment, Remote Sensing of Environment 181, 2016, pp. 207–217, DOI:10.1016/j.rse.2016.04.007.
- [13] GARCIA-GARRIDO V.J., RAMOS A., MANCHO A.M., COCA J., WIGGINS S., A dynamical systems perspective for a real-time response to a marine oil spill, Marine Pollution Bulletin 112(1–2), 2016, pp. 201–210, DOI:10.1016/j.marpolbul.2016.08.018.
- [14] ZHONG Z.X., YOU F.Q., Oil spill response planning with consideration of physicochemical evolution of the oil slick: a multiobjective optimization approach, Computers & Chemical Engineering 35(8), 2011, pp. 1614–1630, DOI:10.1016/j.compchemeng.2011.01.009.
- [15] TUCHIN V.V, Polarized light interaction with tissues, Journal of Biomedical Optics 21(7), 2016, article 071114, DOI:10.1117/1.JBO.21.7.071114.
- [16] TUCHIN V.V., WANG L., ZIMNYAKOV D.A., Optical Polarization in Biomedical Applications, Springer, Berlin, Heidelberg, 2006, DOI:10.1007/978-3-540-45321-5.
- [17] WAN M., GU G., QIAN W., REN K., CHEN Q., Stokes-vector-based polarimetric imaging system for adaptive target/background contrast enhancement, Applied Optics 55(21), 2016, pp. 5513–5519, DOI:10.1364/AO.55.005513.
- [18] LI H., LI L., ZHANG J., Multi-focus image fusion based on sparse feature matrix decomposition and morphological filtering, Optics Communications 342, 2015, pp. 1–11, DOI:10.1016/j.optcom.2014.12.048.
- [19] DUFFIN R.J., On the characteristic matrices of covariant systems, Physical Review 54(12), 1938, p. 1114, DOI:10.1103/PhysRev.54.1114.
- [20] XU J., QIAN W.X., CHEN Q., ZHOU Y., Calculation model of Hyperion reflected light scattering efficiency, Applied Optics 56(18), 2017, pp. 5248–5252, DOI:10.1364/AO.56.005248.
- [21] XU J., QIAN W.X., LU D.M., LU Y.C., Calculating model for equivalent consumption efficiency in polarization measurement system of oil-spilled on the sea, Infrared Physics & Technology 77, 2016, pp. 474–479, DOI:10.1016/j.infrared.2016.07.005.
- [22] XU J., QIAN W.X., CHEN Q., GU G.H., LU Y.C., ZHOU Y., Uniform scattering power for monitoring the spilled oil on the sea, IEEE Photonics Journal 10(1), 2018, pp. 6100310, DOI:10.1109/JPHOT.2018.2799206.
- [23] LE ROY-BREHONNET F., LE JEUNE B., Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties, Progress in Quantum Electronics 21(2), 1997, pp. 109–151, DOI:10.1016/S0079-6727(97)84687-3.
- [24] MIGHELL K.J., Algorithms for CCD Stellar Photometry, Astronomical Data Analysis Software and Systems VIII, ASP Conference Series, Vol. 172, [Eds.] D.M. Mehringer, R.L. Plante, D.A. Roberts, 1999, pp. 317–328.
- [25] ORTEGA-QUIJANO N., ARCE-DIEGO J.L., Mueller matrix differential decomposition, Optics Letters 36(10), 2011, pp. 1942–1944, DOI:10.1364/OL.36.001942.
- [26] DEVLAMINCK V., TERRIER P., CHARBOIS J.M., Physically admissible parameterization for differential Mueller matrix of uniform media, Optics Letters 38(9), 2013, pp. 1410–1412, DOI:10.1364/OL.38.001410.
- [27] BORN M., Principles of Optics, Publishing House of Electronics Industry, Beijing, 1999.
- [28] SHARMA K.K., Optics Principles and Applications, Academic Press, New York, Boston, 2006.
- [29] QIAN W., ZHOU X., LU Y., XU J., Paths correlation matrix, Optics Letters 40(18), 2015, pp. 4336–4339, DOI:10.1364/OL.40.004336.
- [30] SOWMYA K., NAGENDRA K.N., SAMPOORNA M., STENFLO J.O., Polarized scattering of light for arbitrary magnetic fields with level-crossings from the combination of hyperfine and fine structure splittings, The Astrophysical Journal 814(2), 2015, p. 127, DOI:10.1088/0004-637X/814/2/127.
- [31] COX C., MUNK W., Measurement of the roughness of the sea surface from photographs of the sun’s glitter, Journal of the Optical Society of America 44(11), 1954, pp. 838–850, DOI:10.1364/JOSA.44.000838.
- [32] JACKSON C.R., ALPERS W., The role of the critical angle in brightness reversals on sunglint images of the sea surface, Journal of Geophysical Research: Oceans 115(C9), 2010, article C09019, DOI:10.1029/2009JC006037.
- [33] ZHANG H., WANG M.H., Evaluation of sun glint models using MODIS measurements, Journal of Quantitative Spectroscopy and Radiative Transfer 111(3), 2010, pp. 492–506, DOI:10.1016/j.jqsrt.2009.10.001.
- [34] YOUNG A.T., Rayleigh scattering, Applied Optics 20(4), 1981, pp. 533–535, DOI:10.1364/AO.20.000533.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-032cfad0-a84d-46a2-8ee2-70bf589a5008